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ABSTRACT

Present-day proteins are believed to have evolved features to reduce the risk of aggregation. However, 

proteins can emerge de novo by translation of non-coding DNA segments. In this study we assess the 

aggregation,  disorder  and transmembrane propensity  of  protein  sequences  generated  by translating 

random nucleotide  sequences  of  varying  GC-content.  Potential  de  novo random-sequence  proteins 

translated from regions with GC content between 40-60% do not show stronger aggregation propensity 

than existing ones and exhibit similar tendency to be disordered. We suggest that  de novo emerging 

proteins do not mean an unavoidable aggregation threat to evolving organisms.  
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INTRODUCTION

The emerging consensus on protein aggregation is that it is an inherent property of any polypeptide 

chain and, regardless of their  amino acid sequences,  the amyloid fibril  might  be the most  favored 

thermodynamic state of all proteins [1, 2, 3]. Even so, proteins display sequence-specific aggregation 

propensities that can be estimated by in silico methods [4, 5]. Thus, proteins can evolve to reduce the 

risk of aggregation and detailed studies of selected proteins revealed a number of such mechanisms [6]. 

However, proteins continuously emerge  de novo by transcription and translation of previously non-

coding DNA segments [7, 8, 9]. This poses the question whether novel proteins that did not yet have 

the chance to reduce their aggregation load by selection can seriously hinder molecular evolution: if the 

aggregation propensity of de novo proteins is generally high, leading to the aggregation of practically 

all de novo polypeptides, that might render the chances of the emergence of such proteins negligible.

De novo origin of coding sequences from non-coding ones is a rare but not improbable event, there are 

e.g. human- and primate-specific proteins thought to have arisen by this mechanism [9,  10,  11]. The 

overall  low-level  transcriptional  activity of the human genome provides a  plausible  basis  for  such 

events [12]. Thus, the aggregation propensity of such proteins is worth to be explored. As the number 

of known genuine  de novo proteins is fairly low, in this study we chose to use an  in silico study on 

random, translated DNA sequences to i) have a dataset of sufficient size to observe trends, ii) assess the 

aggregation propensity before any - however short-time - selection could take place at the protein level 

and iii) have a standardized way to assess and compare trends for sequences with different GC-content 

that can be used as a benchmark for real de novo proteins.
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MATERIALS AND METHODS

Detailed description of all the methods used and datasets can be found in the online supplementary 

material. Random DNA sequences of varying GC-content were generated with the restriction that in-

frame STOP codons were avoided. Translated protein sequences were subjected to different algorithms 

(Table S1) to assess their tendency for aggregation (TANGO [13], WALTZ [14] and FoldAmyloid [15, 

16]),  forming  disordered  (IUPred  [17 ,18],  RONN  [19]  and  VSL2B [20,  21])  or  transmembrane 

structures (HMMTOP [22], DASTMfilter [23] and TMHMM [24]). The number of residues predicted 

to  be  in  the  given  structural  classes  by  the  algorithms  were  averaged  and  used  as  a  consensus 

prediction.  The  same  algorithms  were  applied  to  a  number  of  databases  representing  folded 

(ASTRAL40,  version  1.75),  unfolded  (DISPROT,  version  5.7),  aggregation-prone  (AmyPDB,  last 

update on 7th April, 2008) and transmembrane proteins (PDBTM, version 2.3) as well as the complete 

human and mouse proteomes (from Uniprot release 2011_05). The obtained one- and two-dimensional 

distributions at the three properties (disorder, aggregation and transmembrane tendency defined as the 

percentage of residues falling to these categories in the consensus prediction) were compared by the 

appropriate variants of the Kolmogorov-Smirnov test. In addition, the area spanned by the sequences in 

the two- and three-dimensional plots and the overlap between the distributions obtained for different 

databases were estimated using a grid-based approach. The coding sequences of human orphan proteins 

were obtained by comparing the translated mRNA sequences to the available protein sequences and 

extracting the nucleotide sequences in the matching region.

RESULTS

Random sequences and predictions of structural features

We generated 10,000 random DNA sequences of 480 nucleotides without in-frame STOP codons for 

each of GC-content  regime from 10% to 90% using steps  of 10%. The 160-residue length of the 

translated polypeptides can be regarded as a reasonable estimate of average domain size in proteins [25, 

26].  Although  not  the  full  GC-range  explored  is  biological  relevance,  as  for  example  the  human 

genome has an average GC-content of 41% and ranges approximately from 20% to 60% [27], we chose 

our  systematic  scan  to  identify  general  trends.  After  translating  all  of  the  9x10,000  nucleotide 

sequences, we have used BLAST [28] search to assess the similarity of the resulting random de novo 

proteins to known sequences. No hits were found below an E-value of 1*10-10, and only 30 hits were 
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found below an E-value of 0.001 (Table S2). Thus, our random sequence set is sufficiently distinct 

from extant proteins. Next, we used a set of prediction algorithms to assess their aggregation loads 

(TANGO [13], WALTZ [14] and FoldAmyloid [15, 16]), their disorder (IUPred [17, 18], RONN [19] 

and  VSL2B  [20,  21])  and  transmembrane  propensities  (HMMTOP  [22],  DASTMfilter  [23]and 

TMHMM [24]). None of the applied methods uses evolutionary information during data processing 

like today's best-performing secondary structure prediction tools [29]), thus, we expect that they can be 

used for de novo sequences in an unbiased way. We have performed the same predictions on several 

databases representing folded, disordered, transmembrane and aggregation-prone proteins as well as 

the complete human and mouse proteomes. It is important to stress that we do not wish to assess the 

absolute aggregation propensity of any of the sequence sets, rather, in all evaluations below, we analyze 

trends and draw conclusions from comparisons of predictions made with the same toolkit. 

General trends

Naturally,  the  amino-acid  composition  of  our  random  datasets  reflects  the  standard  genetic  code 

organization.  At low GC-content,  hydrophobic amino acids appear with higher frequency, typically 

representing 50-70% of all residues. At 90% GC-content, only 10% of all residues are hydrophobic and 

20% is arginine (Table S3).  In present-day proteomes, acidic amino acids (Glu, Asp) are remarkably 

more frequent than expected from the codon distribution in the standard genetic code [30 ,31] (Table 

S4). At high GC-content, basic amino acids are overrepresented in the standard code-translated dataset 

relative to present-day natural proteins. The mean net charge of random de novo sequences exhibits a 

minimum at 40% GC-content and it  is  still  higher than the highest value obtained for present-day 

proteins, corresponding to IDPs. The mean hydrophobicity shows a decreasing trend with increasing 

GC-content and covers a wider range than that of present-day proteins (Fig. S1 and S2).

According to the averaged structural predictions, the GC-content of the underlying DNA sequences 

governs the structural preferences of the random proteins with clearly identifiable trends that are much 

more pronounced than the variations in the simple physico-chemical parameters. Intrinsic disorder is a 

dominant feature of sequences with coding regions of high GC-content (Table 1). Around 50% GC-

content, 25% of all amino acid residues is predicted to be disordered. In this respect, only aggregation-

prone and transmembrane present-day proteins have a lower average value. At 60% GC-content and 

above,  random sequences  are  practically  fully  disordered  containing  on  average  one  or  two  long 

5



Preprint of: FEBS Letters 586: 2468-72, http://dx.doi.org/10.1016/j.febslet.2012.06.007

disordered regions (Fig. 1a).

The propensity to  form transmembrane helices is  relatively high at  low GC-content and decreases 

rapidly to practically vanish over 60% GC-content. At 40% GC-content, the average ratio of residues in 

transmembrane segments is comparable to those in the complete human and mouse proteomes  (Fig 

1b).

The  aggregation  load  in  random sequences  is  highest  at  low GC-content  and drops  quickly to  an 

average 5% of  all  residues  at  50% GC-content.  At  and above 60% GC, practically all  parameters 

investigated are on average below those of present-day proteins (Fig 1c).

Interplay between structural properties

We have investigated whether the predicted structural preferences are independent of each other or 

there  are  some  associations.  We  have  investigated  this  aspect  at  the  sequence  level,  calculating 

correlations  between  the  percentage  of  residues  predicted  to  be  disordered,  transmembrane  and 

aggregation-prone (Tables 2 and S5). Both these values and two-dimensional plots of these features 

indicate  that  these  features  are  loosely  interdependent  and  not  all  regions  of  the  disorder-

transmembrane-aggregation space are accessible either for random or for existing protein sequences 

(Figure 1d, 1e, 1f).

Sequences with higher percentage of disordered residues tend to have less transmembrane helices and 

lower aggregation propensity. However, the nature of the interdependence is different, with a large 

range of variation in transmembrane propensity at low disorder tendency, whereas aggregation load 

seems to be more strictly negatively associated with disorder. On the other hand, the tendency to form 

transmembrane helices shows a positive association with aggregation propensity. These trends suggest 

that amino acid composition plays a decisive role in defining these structural features.

Comparison to databases

We stress that we do wish to assess the absolute propensity of any sequence set to be disordered, form 

transmembrane  helices  and  being  prone  to  aggregation,  rather  use  consensus  predictions  for 

comparative purposes. Our results allow to compare the trends observed for random-sequence proteins 

to those observed in natural ones. Below, unless noted otherwise, we will focus on random proteins 

translated from the physiologically most relevant range of GC-content, between 40 and 60%.
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Intrinsic disorder depends heavily on the underlying GC-content of the random sequences, at 60% the 

random sequences show clearly higher disorder propensity than even DISPROT, whereas at 40 and 

50% of the translated proteins are predicted to contain less disordered residues than those in extant 

proteomes (Table 1).

The tendency to form transmembrane helices is much lower for random sequences translated from 

DNA of 50% or higher GC content than for extant proteins except globular and disordered ones (Table 

1). 

Interestingly, the highest aggregation potential can be attributed to transmembrane proteins in PDBTM 

and not aggregation-prone proteins in AmyPDB which do not show higher aggregation propensity than 

globular proteins (ASTRAL40) or those in the human and mouse proteomes.

For all three properties investigated, standard deviation for existing proteins is higher than for random 

ones, corresponding to higher variability in selected, functional proteins than in potential de novo ones. 

To further elaborate and compare the properties of random de novo and extant proteins, we plotted the 

investigated structural preferences in two dimensions for each sequence and compared the resulting 

two-dimensional distributions and the area covered by the sequences in the disorder-transmembrane-

aggregation space (Fig S3, S4 and S5). 

Statistical  tests  (one- and two-dimensional  Kolmogorov-Smirnov tests)  reveal that  the distributions 

obtained for the disorder, transmembrane and aggregation tendencies of the human proteome and the 

proteins translated from random DNA segments with 40-50-60% GC-content are totally dissimilar with 

a P-value of 0 (Table 2). This is due to the different local densities of the data points in the investigated 

data sets. However, when estimating the (2D or 3D) space covered by the data points corresponding to 

the random sequence set above, it is apparent that more than 95% of this space overlaps with that  

spanned  by  proteins  in  the  human  proteome.  In  contrast,  the  overlap  is  only  around  35% when 

calculated relative to the human proteome (Tables S6, S7, S8). The non-overlapping part of the space 

covered by the random sequences corresponds to low aggregation propensity.

It should be noted that the most striking difference between the random protein sets and the human 

proteome is  in  their  tendency to  form transmembrane helices,  as  natural  sequences  exhibit  higher 

propensity for this than those translated from random DNA segments.

De novo proteins in the human genome

7



Preprint of: FEBS Letters 586: 2468-72, http://dx.doi.org/10.1016/j.febslet.2012.06.007

We have investigated three de novo human proteins [8, 10] using the same methodology as for random 

sequences. Interestingly, these are in accordance with the trends observed for random de novo proteins 

with  respect  to  the  dependence  of  structural  features  on  the  GC-content  of  the  underlying  DNA 

segment.  The  DNAH10OS  (P0CZ25)  and  C22ORF45  (P86434)  proteins  are  predicted  to  have 

disordered  stretches  and  the  GC-content  of  their  coding  segments  is  around  60% for  the  coding 

segment  (Table  3).  In  contrast,  CLLU1  (Q5K131)  is  predicted  to  have  a  significant  aggregation 

tendency, as expected for a protein translated from a low-GC DNA segment. More detailed prediction 

results can be found in the online Supplementary Material. 

DISCUSSION

In this in silico study we generated and analyzed random-sequence hypothetical de novo proteins from 

DNA with  varying GC-content.  This  method differs  from generally applied  ones  for  investigating 

random protein sequences where amino acid frequencies are set a priori, whereas in our approach these 

are dictated by the GC-content of the underlying coding segments and the (standard) genetic code. 

Although the  connection  between genomic  GC-percentage  and the  amino acid  composition  of  the 

translated proteins  is  a  finding neither  novel  nor surprising,  our approach yields  a  solid  basis  and 

benchmark to estimate the structural properties of newly emerging proteins. Besides, it corresponds to a 

realistic scenario shown to be operative for a few proteins even recently in the human lineage. We were 

able to identify trends in the structural properties of potential  de novo proteins as a function of the 

features of the hypothetical genomic sequences translated. We have shown that increasing GC-content 

implies  higher  tendency  to  form  disordered  segments  and  lower  transmembrane  and  aggregation 

potential for the translated sequences.

Our main finding is that the random proteins translated from DNA with 40-60% GC occupy a region in 

the space of the properties considered that is almost entirely within the span of those of extant proteins 

in  the  human  proteome.  Random  de  novo proteins  are  not  expected  to  have  a  larger  aggregation 

potential than existing ones, nor display a higher degree of disorder. However, they clearly display a  

lower propensity to form transmembrane helices, meaning that from the three properties investigated, 

this  is  the one that most likely needs  the most  serious optimization during further  evolution.  This 

finding is also in line with the notion that probably transmembrane helices represent the most regular 

type of structural elements investigated here, with requirements on length and composition etc., thus 
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these are the least expected to arise by chance in random sequences. The situation is similar to that 

observed for coiled coils with underlying specific repeats and disordered segments [32].

It should be stressed that our study corresponds to a first approximation of the problem and can rather 

be viewed as a  benchmark study than an accurate  model  of real  evolutionary processes.  Genomic 

sequences are non-random, and real proteins can display bias relative to the expected properties based 

on the GC-content of the underlying sequences. For example, the amino acid composition of proteins in 

the PDBTM database shows the highest similarity to our random proteins translated from DNA with 

GC-content of 70-80% (Table S3, S4). However, these proteins have higher aggregation propensity and 

transmembrane  tendency  than  other  extant  proteins,  contrary  to  the  trends  observed  for  random 

proteins.

Our finding that de novo proteins are not particularly prone to aggregation might appear contradictory 

to  claims  that  proteins  are  optimized against  aggregation  during evolution.  However,  our  methods 

addressing three basic structural properties do not reveal any detailed structural, let alone functional 

features. On the other hand, we feel that as the prediction programs used here consider sequence only 

and no evolutionary relationships, their results are suitable for comparing the features of extant and 

hypothetical  proteins.  In  particular,  the  fact  that  the  presence  of  structured  parts  can  influence 

aggregation  properties  of  proteins  is  taken  onto  account  by  disorder  predictions,  approximating 

globularity with the inverse of disorder. It is expected that after the birth of a  de novo protein it is 

optimized by selection to perform its function and to adjust its structure, stability and dynamics. During 

this process the maintenance or even lowering of the aggregation potential present in the newly born 

protein  is  one  of  the  pressures  operative  during  evolution.  It  can  even  be  expected  that  initially 

requirements for the presence of a suitable hydrophobic core or transmembrane helices can even render 

these proteins more prone to aggregation,  and the described mechanism to lessen this load can be 

operative after the suitable structure and stability are reached. So long as the benefits of the new protein 

outweigh its hazards for the organism, especially if its expression level is low, such scenarios can be 

plausible. Our results do not contradict the presence and nature of selection pressures present at any 

later stages of protein evolution, but they suggest that the appearance of novel coding sequences is not 

expected to be hampered by unusually high aggregation propensity of the translated proteins.
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Figure legend

Fig. 1. Comparison of predicted properties of the human proteome with the 40, 50 and 60% GC-based 

random protein sets.



Preprint of: FEBS Letters 586: 2468-72, http://dx.doi.org/10.1016/j.febslet.2012.06.007

Table 1. Summary of averaged prediction results on random sequences and selected databases

Values refer to the percentage of residues predicted to be in the structural state investigated

database
Disorder Transmembrane Aggregation

No. of
sequences

percentile percentile percentile

Avg ± stdev 25% 75% Avg ± stdev 25% 75% Avg ± stdev 25% 75%

AmyPDB 247 33.62 23.62 44.90 47.29 4.20 6.74 0.00 6.73 19.18 6.55 9.29 23.87

ASTRAL40 10175 16.26 13.45 7.10 20.77 1.15 5.45 0.00 0.00 21.26 5.49 18.09 24.33

DISPROT 529 43.89 28.22 21.11 64.48 2.61 6.03 0.00 2.08 16.51 6.80 11.72 21.07

HUMAN 20899 34.74 24.14 14.99 51.11 6.10 11.91 0.00 5.00 21.05 8.41 15.25 25.07

MOUSE 18525 33.31 23.95 13.69 49.56 7.03 13.03 0.00 6.10 21.69 8.88 15.60 25.69

PDBTM 429 12.59 9.65 5.75 16.88 31.86 20.11 12.00 48.02 34.47 10.79 25.61 41.97

GC=10% 10000 1.10 0.95 0.42 1.46 42.47 9.53 36.04 48.96 54.75 4.48 51.88 57.81

GC=20% 10000 2.08 1.78 1.04 2.71 29.85 10.48 22.92 37.08 47.95 5.36 44.38 51.56

GC=30% 10000 4.51 3.69 2.08 6.04 16.83 10.91 8.75 24.58 39.26 5.64 35.31 43.12

GC=40% 10000 10.26 7.32 4.79 13.96 6.98 8.08 0.00 12.08 30.29 5.25 26.56 33.75

GC=50% 10000 24.01 13.71 13.75 31.67 2.65 4.68 0.00 3.96 22.31 4.58 19.06 25.31

GC=60% 10000 50.57 19.25 36.04 64.58 1.01 2.63 0.00 0.00 15.50 3.81 12.81 17.81

GC=70% 10000 81.48 14.45 73.07 92.92 0.24 1.06 0.00 0.00 9.72 3.05 7.50 11.60

GC=80% 10000 96.68 4.69 95.42 100.00 0.09 0.52 0.00 0.00 5.18 2.23 3.75 6.56

GC=90% 10000 99.77 0.79 100.00 100.00 0.22 0.77 0.00 0.00 1.84 1.31 0.94 2.50

Table 2. Correlation between structural properties for selected data sets

Properties correlated 
(number of residues 
predicted to be in 
the states below)

Random-nucleotide translated Proteome data

40% GC 50% GC 60% GC 40-50-60% 
GC 

combined

Human Mouse

disorder-
transmembrane

-0.205 -0.193 -0.248 -0.375 -0.350 -0.380

disorder-aggregation -0.572 -0.692 -0.771 -0.834 -0.780 -0.781

transmembrane-
aggregation

0.587 0.433 0.331 0.588 0.742 0.780

All correlations are significant at the 0.05 level
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Table 3. Predictions of structural features and GC-content of three recently identified de novo human 

orphan genes [8].The GC-content was calculated for the whole mRNA segment (%GC mRNA) and for 

the protein-coding RNA segment (%GC exon).

UniProt ID length %disorder %transmembrane %aggregation %GC mRNA %GC exon

P0CZ25 163 92.95 0 9.51 54.92 63.60

P86434 159 50.31 0 15.41 58.89 59.12

Q5K131 121 7.02 10.95 41.74 37.11 31.96
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Figure 1.


