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Abstract Proteins are elaborate biopolymers balancing

between contradicting intrinsic propensities to fold,

aggregate, or remain disordered. Assessing their primary

structural preferences observable without evolutionary

optimization has been reinforced by the recent identifica-

tion of de novo proteins that have emerged from previously

non-coding sequences. In this paper we investigate struc-

tural preferences of hypothetical proteins translated from

random DNA segments using the standard genetic code and

three of its proposed evolutionarily predecessor models

encoding 10, 6, and 4 amino acids, respectively. Our only

main assumption is that the disorder, aggregation, and

transmembrane helix predictions used are able to reflect the

differences in the trends of the protein sets investigated.

We found that the 10-residue code encodes proteins that

resemble modern proteins in their predicted structural

properties. All of the investigated early genetic codes give

rise to proteins with enhanced disorder and diminished

aggregation propensities. Our results suggest that an

ancestral genetic code similar to the proposed 10-residue

one is capable of encoding functionally diverse proteins but

these might have existed under conditions different from

today’s common physiological ones. The existence of a

protein functional repertoire for the investigated earlier

stages which is quite distinct as it is today can be deduced

from the presented results.

Keywords Random-sequence proteins � Protein

evolution � Protein intrinsic disorder � Protein aggregation �
Structure prediction � Genetic code evolution

Introduction

One of the most difficult problems related to the origin of

life on Earth is the emergence and evolution of translation

and the genetic code. Although there is considerable pro-

gress in understanding the mechanism of extant ribosomes

and possible evolution of functional RNA and RNP com-

ponents (Davidovich et al. 2010; Harish and Caetano-A-

nollés 2012), we have limited knowledge on the structure

and function of the earliest proteins. For the origin of the

genetic code and the first proteins, a number of scenarios

have been put forward and probably even more are possible

(see e.g., Szathmáry 1993; Koonin and Novozhilov 2009;

Strulson et al. 2012). These scenarios differ in the aspect

whether proteins emerged with or without closely linked to

RNA and whether template-based synthesis evolved after

the first proteins emerged or that a primitive form of

translation was a prerequisite for the birth of the first

functional proteins. There are numerous considerations

ranging from the availability of prebiotically synthesized

amino acids (Higgs 2009) through some intrinsic structural

properties of proteins (Greenwald and Riek 2012) to

including functional requirements (Houen 1999). However,

due to the complexity of the issue, we argue that a number

of aspects should be combined when reconstructing a

viable earlier stage of biochemical evolution. An important

aspect is that the earliest proteins produced by the first

Electronic supplementary material The online version of this
article (doi:10.1007/s00239-014-9622-3) contains supplementary
material, which is available to authorized users.
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primitive translation machineries are expected to have

some selective advantage to the host organism. In this

study we aim to estimate the structural preferences and

heterogeneity of proteins encoded by three proposed

ancient genetic codes. These properties are then compared

to each other and similarly derived predictions for the

present-day universal genetic code (referred to as STAN-

DARD below). Our study is designed to yield a first-

approximation assessment of the potential of the proposed

early codes to encode for a diverse set of functional pro-

teins. The three proposed earlier stages of the genetic code

investigated are detailed below.

• We have chosen a suggested 10-residue (EARLY10)

stage (Higgs 2009) based on the availability of

prebiotically synthesized amino acids and on the

consideration that later additions should reduce the

‘‘cost’’ of the code defined on the basis of the errors

introduced by the incorporation of suboptimal amino

acids in the encoded proteins. To define the cost of a

specific codon reassignment, the authors utilize a

number of physiochemical properties of the individual

amino acids. The initial set of amino acids is taken as

those formed most easily under abiotic conditions.

• The second code considered is a 6-residue (EARLY6)

stage proposed (Di Giulio and Medugno 1999; Di

Giulio 2008) in line with the coevolution theory based

on the assumption that the expansion of the genetic

code occurred in parallel with the increasing availabil-

ity of amino acids as biosynthetic pathways became

more and more complex. Thus, the first set of encoded

amino acids is defined by their availability by abiotic

synthesis. Relationships between biosynthetic pathways

and codon assignments find statistical support in the

organization of the present code where biosynthetically

related amino acids share codon boxes (Wong 2005).

• Third, a highly hypothetical 4-residue (EARLY4) stage

(Houen 1999) was selected for comparison. This code

was proposed based on the structure of the modern

genetic code and on the physicochemical properties of

the amino acids. Requirements for the ability to

generate folded functional proteins are emphasized in

the supporting argumentation. Among the three pro-

posed early codes investigated here, this is the only one

to encode for a positively charged amino acid (Arg) as

an important requirement for the interaction with

nucleic acids.

• Considering that for the first four amino acids Gly, Ala,

Glu, and Val were proposed by independent authors

(Higgs 2009; Oba et al. 2005), and that short peptides

consisting of these amino acids were found to possess

catalytic (proteolytic) activity (Oba et al. 2005), we

have also generated random proteins with these four

amino acids. This will be referred to as the GADV set

below. It should be noted that both EARLY6 and

EARLY10 codes above encode these four amino acids.

To compare the features of different proteins encoded by

different early codes, we used random coding sequences

that were translated by each code. This process mimics the

flow of information at a stage of biochemical evolution

where some form of a translation apparatus is present.

Further, our approach acts as a highly simplified model for

de novo protein generation where previously non-coding

nucleic acid segments become translated. In this approach

the frequency of the amino acids is determined by the

codon tables and the GC-content of the underlying coding

sequence and not by any independent a priori assumption.

Random sequence generation was performed also for the

STANDARD code in order to evaluate the trends without

bias that could have been introduced by investigating

extant proteins. The use of random sequences imposed also

a criterion for the predicted features and the algorithms as

no approaches using evolutionary information can be

applied in this scenario. It is also important to underline

that all our investigations can be interpreted only in a

comparative way as we do not expect that any of these

predictions yields a reliable absolute estimate of the

properties of the non-natural sequences investigated here.

Thus, the single initial key assumption of this study is that

the differences observed for the random sequence sets

reflect the differences between extant and hypothetical

extinct proteomes.

Most prediction programs are optimized for predicting

structural features at ambient conditions, and we are aware

of the fact that predictions usually do not reproduce

experimental behavior completely and that the output of

different algorithms might not be directly comparable. In

line with this, we will always focus on the trends observed

for a given property as predicted by the consensus of three

methods with different theoretical basis.

The three structural properties predicted and investi-

gated are:

• Intrinsic disorder: intrinsically disordered proteins

(IDPs) and disordered segments do not adopt a stable

three-dimensional fold, rather, they can be characterized

by a high number of rapidly interconverting structural

states (Tompa 2012). They are sometimes involved in

biochemical tasks not easily performed by well-folded

globular proteins (Ferreon et al. 2013). The abundance

of IDPs in proteomes was found to correlate with

organism ‘‘complexity’’ (Schád et al. 2011), thus, it is an

interesting question whether disorder could be prevalent

in early proteomes. As today a number of translation-

associated tasks are done by globular domains, our
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hypothesis is that the earlier codes should have been

able to code for such proteins. For example, evolution-

ary analyses suggest that the most ancient ribosomal

proteins have globular domains like the OB fold and

SH3-like structure (Harish and Caetano-Anollés 2012),

although a number of disordered segments contact

ribosomal RNA in an extended conformation within the

full ribosome (Ban et al. 2000).

• Aggregation propensity: the ability to form amyloid-

type aggregates is generally acknowledged to be an

intrinsic property of proteins (Dobson 2003; Perczel

et al. 2007; Schnabel 2010). Aggregation is widely

considered harmful for the cell, there is evolutionary

pressure to reduce the risk of aggregation (Reumers et al.

2009a, b; Pastore and Temussi 2012; Villar-Pique and

Ventura 2012). However, if proteins need to be opti-

mized during evolution to avoid aggregation, the ques-

tion arises whether newly born (‘‘de novo’’) proteins are

viable and whether they pose a potential risk to the

organism (Wu and Zhang 2013). Considering the early

stages of protein evolution, the problem might have been

more serious for ancient proteins that existed in an

environment devoid of today’s elaborate cellular mech-

anisms acting to reduce the risk of aggregation (Mon-

sellier and Chiti 2007; Reumers et al. 2009a, b; Stefani

2004). Based on this information, we expect that earlier

codes are biased toward avoiding to produce proteomes

with high aggregation propensities. However, it should

be noted that a scenario has been proposed where the first

functional proteins adopted amyloid-like aggregated

structures (Greenwald and Riek 2012).

• Ability to form transmembrane helices: transmembrane

(TM) proteins are essential in extant living cells for the

organization of material transport and communication

through lipid membranes. The transmembrane part can

have a beta-barrel structure or can consist of a bundle of

alpha-helices. This latter structure is more abundant

and there are a number of algorithms available than can

predict the presence of TM helices from amino acid

sequence based on the presence of specific segments of

predominantly hydrophobic residues able to form a

helix of sufficient length to span the membrane.

Our aim in this study is to compare the trends of prop-

erties varying with the size and composition of the amino

acid alphabet regarding the aforementioned protein prote-

ome properties.

Materials and Methods

For this study we have chosen three different ancestral

genetic codes at different stages of evolution, referred to as

EARLY4, EARLY6, and EARLY10 (Figure S1 in Online

Resource 1). Notice that arginine and leucine were encoded

in the EARLY4 but not in the EARLY6 or EARLY10

codes. Thus, a chronological sequence of these three

hypothetical ancestral codes is incompatible with sequen-

tial addition (and no other changes) of amino acids during

genetic code evolution.

Nine sets of random DNA sequences with 10–90 % GC-

content incremented by 10 % were generated using in-

house Perl scripts. The resulting sequence sets are labeled

as GC10 to GC90. For each of them, 10,000 DNA

sequences of 480 nucleotides in length were generated by

adjusting the base probabilities p(N) to the desired values.

For simplicity, the probabilities for complementary bases

were kept equal (p(C) = p(G) and p(A) = p(T)). In-frame

STOP (and START codons for EARLY4) were avoided.

The generated DNA sequences were translated using the

standard genetic code and the three proposed earlier ones.

Thus, 4 9 9 9 10,000 de novo protein sequences with the

length of 160 residues each were analyzed at this stage.

The length of 160 amino acid residues (translated from 480

nucleotides) was chosen as a good estimate for average

protein domain size (Lin and Zewail 2012). In addition, for

the GC40, GC50, and GC60 sets, protein sequences with

lengths of 40, 80, and 120 residues were generated in order

to analyze the possible effect of chain length on the results.

The length of 40 residues is assumed to be around the limit

where the applied structure predictions can be comparable.

To further investigate the effect of amino acid distri-

bution, we have generated additional data sets where the

frequency of amino acids was not dictated by the GC-

content of the coding sequence and the applied genetic

code, but were adjusted directly. Besides random proteins

with equal amino acid frequencies (designated Equal),

additional protein sequence sets with lengths of 40, 80,

120, and 160 residues were generated: one where the fre-

quencies of charged, polar, and hydrophobic residues were

adjusted to match those in the standard genetic code at

50 % GC-content (designated CHPfreq) and another in

which the frequencies of the charged amino acids were set

to match that in the standard code and the ratio of polar and

hydrophobic residues matches that of the proposed early

code in question (designated Cfreq). In addition, equal-

frequency random proteins with the amino acids Gly, Ala,

Asp, and Val were generated (designated GADV) (Table

S1 in Online Resource 1).

For the two sets of protein sequences obtained by the

STANDARD and the EARLY10 code, we have performed

a BLAST search against the ‘‘nr’’ database to assess the

similarity of the resulting random de novo proteins to

known sequences. Sequences obtained with the EARLY6

and EARLY4 codes are not suitable for standard BLAST

search because of their low complexity nature.
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Data analysis was performed similarly to that descri-

bed in our previous study (Ángyán et al. 2012). We used

sequence-based in silico prediction algorithms to esti-

mate structural propensities of these random-sequence

polypeptides (Ángyán et al. 2012). An important aspect

of the algorithms chosen is that they do not rely on

evolutionary information, i.e., do not use alignments

with homologous proteins as part of the prediction. This

is necessary to avoid any bias as our investigation

focuses on hypothetical proteins with no extant relative

sequences.

Intrinsic disorder was estimated using the IUPred

(Dosztányi et al. 2005), RONN (Yang et al. 2005) and

VSL2B (Obradovic et al. 2005) algorithms, transmembrane

helix (TMH) forming propensity using DAS-TMfilter

(Cserzo et al. 2004), TMHMM (Krogh et al. 2001) and

PHOBIUS (Käll et al. 2004), and aggregation propensity

using FoldAmyloid (Garbuzynskiy et al. 2010) and the

TANGO/WALTZ (Fernandez-Escamilla et al. 2004; Ma-

urer-Stroh et al. 2010) algorithms. None of these predictors

use evolutionary information during data processing, thus

we expect that they can be used for de novo sequences in

an unbiased way.

To assess the consistency of the predictions, the segment

overlap (SOV) measure (Zemla et al. 1999) was calculated

for all predicted properties on selected random protein

sequences using the implementation of Balázs Szappanos

(Szappanos et al. 2010) We use the SOV(obs) measure

which takes into account both positive and negative pre-

dictions, i.e., segments predicted to adopt the structural

feature in question and also segments that are predicted not

to be in that state.

Results

We have analyzed the intrinsic disorder, the tendency to

form transmembrane helices, and aggregation propensity

for protein sequences translated from random DNA seg-

ments of varying length and GC-content with three pro-

posed ancient genetic codes (EARLY10, EARLY6, and

EARLY4 according to the number of amino acids coded,

Figure S1 in Online Resource 1) besides the standard one.

Our results obtained for the standard code using highly

similar methodology were published before (Ángyán et al.

2012). Besides, we have generated random protein

sequences with adjusted amino acid frequencies for all

codes and for the GADV residue set. It is important to

stress that all our sequences analyzed are hypothetical and

that we do not expect that we are able to provide a reliable

estimate for the properties investigated for any given

sequence.

Sequences in Our Random Sets are Distinct

from Extant Proteins

The amino acids encoded by the different genetic codes can

be classified based on their propensities for being disor-

dered, aggregation-prone, or typical for transmembrane

helices. A simple grouping of the residue types based on

literature data (Campen et al. 2008; Zhao and London

2006; Pawar et al. 2005) and considering their presence in

each of the genetic codes, some basic considerations can be

made. All proposed early codes investigated here show an

over-representation of disorder-promoting residues relative

to the standard one, whereas amino acids typical of

aggregation-prone regions and transmembrane helices are

almost completely absent from the EARLY6 and EARLY4

sets (Fig. 1; Table S2 in Online Resource 1 ad Figure S2 in

Online Resource 2). Thus, it can be expected that the

predicted structural properties of the corresponding random

proteins will also exhibit characteristic differences.

A BLAST search to identify potential similar sequences

resulted in no hits below an E-value of 1-10 for sequences

translated from GC50 sequences with the standard and the

EARLY10 code.

Physicochemical Properties of Random Proteins are

Distinct for All Four Genetic Codes

As a first approximation, we prepared charge-hydropathy

plots (Uversky 2002) for all the sequences generated in this

study (Figure S3 in Online Resource 2). The plots show

characteristic properties for all of the genetic codes

Fig. 1 Amino acids in the four genetic codes investigated as

classified according their disorder (DIS±), transmembrane helix

forming (TMH±), and aggregation propensity (AGR±). (See also

Figure S2 in Online Resource 2)
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investigated. Only STANDARD and EARLY10 sets

exhibit sequences that are in the ‘‘ordered’’ region of the

plot, i.e., with sufficiently high average hydrophobicity and

small average net charge. However, the trends according to

the GC-content of the underlying coding sequences are

different as STANDARD random proteins tend to be more

hydrophobic with decreasing GC-content while EARLY10

proteins fall into both the ordered and disordered regions of

the plot except for GC90 sequences, as both their charge

and hydropathy increases largely in parallel with decreas-

ing GC-content. The trends observed for 160-residue ran-

dom sequences are closely reproduced by all sets of shorter

sequences with higher deviation, for which the most

straightforward explanation is the higher expected fluctu-

ation of amino acid content of randomly generated short

sequences.

Fig. 2 Segment overlaps (SOVs) of prediction outputs for 160-res-

idue long GC50 sequences translated with each of the four genetic

codes investigated. Overlaps for three selected algorithms with

reference to all nine used are shown in each panel. The SOV measure

is unity for identical predictions but is not symmetric between

different algorithms
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Consistency of Predictions Varies with Alphabet Size

It is important to stress that as in this study we investigate

random sequences, we do not use any sets of sequences

with experimentally determined properties as a standard

for assessing the performance of the methods. We used

the percentage of residues predicted as disordered, TMH,

or aggregation-prone to compare trends between sequence

sets (Ángyán et al. 2012). However, we evaluate the

consistency of the prediction algorithms for selected data

sets by calculating the overlaps between segments (Zemla

et al. 1999) predicted to be in the particular state in

question (disordered, transmembrane, aggregation-prone)

and also segments predicted not to be in that state. A high

SOV value indicates that the two prediction algorithms

yield highly similar results whereas low SOV values

indicate that the two methods produce mutually exclusive

results.

On Fig. 2, we show SOV results obtained for sequences

translated from coding sequences with 50 % GC-content

for each code investigated. These sequences basically have

the same amino acid composition as deducible from the

codon tables for each code adjusted for the absence of

STOP codons (Figure S1 in Online Resource 2).

For the sequences translated with the standard code from

DNA with a GC-content of 50 %, disorder predictions

show the least general overlap while all TMH predictor

algorithms yield practically identical results. Interestingly,

the prediction of aggregation-prone segments by WALTZ

overlaps almost completely with TMH predictions while

FoldAmyloid yields results distinct from all eight other

programs used. The modest overlap between TANGO and

WALTZ is expected based on their intentionally comple-

mentary nature (Ahmed and Kajava 2013).

The picture for the GC50 segments translated with the

EARLY10 code is similar with the TANGO-WALTZ

predictions being closer to each other and that each one of

the disorder predictions exhibiting less overlap with the

other eight algorithms.

For GC50 EARLY6 sequences, all three disorder pre-

dictions yield practically identical results and five of the

remaining six algorithms producing similar output with

FoldAmyloid being the outlier.

Sequences translated with the EARLY4 code are treated

differently by the mutually consistent RONN-VSL2B

algorithms and IUPred. All three TMH prediction methods

together with TANGO and WALTZ show a high level of

agreement with FoldAmyloid yielding again clearly dis-

tinct results.

Based on these results, we have chosen to compare

results obtained by averaging all three prediction outputs

for each feature, termed DIS3, TMH3, and AGR3 predic-

tions. However, in all comparisons it is important to

evaluate the possible discrepancies between all underlying

predictions. We note that the extent of overlaps differ also

according to the GC-content of the underlying coding

sequences as it also influences amino acid abundance (see

Supplementary Dataset).

Structural Preferences of Proteomes Depend on the GC-

Content of Their Underlying Coding Sequences

For random coding sequences, their GC-content drives the

amino acid abundance in the protein sequences translated

from them. Thus, it is expected that the predicted structural

properties of our polypeptides show identifiable trends

according to the alterations in the GC-content of the

underlying coding sequences. Such relationships have been

demonstrated quantitatively for random sequences obtained

with the STANDARD code (Ángyán et al. 2012) and have

been observed here for all three proposed ancient genetic

codes investigated. We note that, as in our previous study,

we investigated sequences with GC-content ranging from

10 to 90 % to be able to clearly identify trends despite that

only the middle of this regime has broad biological

significance.

The tendencies observed for different genetic codes with

increasing GC-content show that intrinsic disorder gener-

ally increases at higher GC-content whereas aggregation

propensity decreases—with noting that there are practically

no trends in this regard for EARLY6 proteins as all

sequences are predicted to be completely disordered and

not prone to aggregation (Figures S4–S6 in Online

Resource 2). However, the trend to form TM helices

exhibits a trend parallel to that of aggregation for the

standard code but not for any of the proposed earlier ones.

Close inspection of individual predictions reveals that this

is caused by including the results of DAS-TMfilter in the

average. Considering the predictions averaged for the

selected pairs of algorithms as described above removes

this discrepancy at the cost of predicting only a very low

number of transmembrane helices compared to proteins

obtained with the standard code.

For the datasates with adjusted amino acid frequencies

(Equal, CHPfreq, and Cfreq) the effect of the size and

nature of the alphabet is also prevalent. The properties of

the random proteins with equal amino acid frequencies

are mostly reminiscent to those of the corresponding

GC40 datasets (Fig. 3). For the EARLY10 and EARLY6

codes, both the CHPfreq and Cfreq sequence sets display

properties similar to the GC50 and GC60 datasetes (for

the EARLY10 code, the amino acid frequencies of the

Cfreq set are identical to the GC50 set). EARLY6 Cfreq

and CHPfreq data sets display more variability in dis-

order occupying more of the ordered regions than

EARLY6 proteins with different amino acid frequencies.
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Fig. 3 Distribution of predicted aggregation propensity as a function

of disorder for all data sets investigated. Sequences with amino acid

distribution based on identical considerations and with matching

length are shown in each panel. Each data point corresponds to the

predicted properties of a single sequence. Note that data points are

overlapping, labels point to regions where the coloring is clearly

visible. Numerical values of the overlaps of the property areas can be

found in Online Resource 3
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However, for the EARLY4 code, both CHPfreq and

Cfreq random proteins exhibit properties that are largely

outside of the regions occupied by standard proteins and

which are also distinct from their Equal, GC40, GC50,

and GC60 couterparts. It must be noted here that for the

EARLY4, CHPfreq, and Cfreq sequences there was a

high discrepancy between the outputs of the prediction

algorithms resulting in abrupt limits in the averaged

properties. VSL2b predicts all sequences composed of

only these four amino acids to be fully disordered,

whereas IUPred predictions span the full range from

complete order to disorder except for the CFreq and

CHPfreq data sets where they indicate practically no

disorder. This observation is in line with our analysis of

the consistency of different prediction tools for sequences

with a limited alphabet.

The GADV Equal sequences display a yet again dif-

ferent distribution of the predicted properties, with gener-

ally higher disorder and lower aggregation tendencies than

the STANDARD data sets. Interestingly, the transmem-

brane helix-forming potential of GADV peptides seems

similar to those of STANDARD proteins.

Per-Sequence Distribution of Predicted Properties is

Characteristic of the Genetic Code

The largest variety of structural features is exhibited by

proteins with the STANDARD code with all the earlier

codes resulting in random proteins with less complex fea-

tures. STANDARD proteins span the largest range for all

structural properties investigated. EARLY10 proteins,

although also spanning the full range of intrinsic disorder

from fully ordered to completely disordered, show a

characteristically different distribution across the sequen-

ces generated with higher intrinsic disorder that for

STANDARD proteins (75.01 ± 15.30 vs. 24.01 ± 13.71

for GC50 sequences for DIS3 predictions). In addition,

EARLY10 proteins have a very low number of predicted

transmembrane helices and show practically no propensity

to aggregate. All EARLY6 proteins are predicted to be

almost fully disordered by all the predictors investigated

and they show only a limited number of aggregation-prone

segments. Only DAS-TMfilter predicts some transmem-

brane helices for these sequences. The largest discrepancies

in the predictions are observed for random EARLY4 pro-

teins. Whereas both VSL2B and RONN predicts them to be

completely disordered, IUPred suggests only a limited

extent of disorder for sequences translated from low-GC

coding segments, which contain almost exclusively Arg

and Leu (over 75 % in average for GC10-GC30). Simi-

larly, only DAS-TMfilter predicts more TM segments and

FoldAmyloid more aggregation-prone regions than for

EARLY6 sequences.

Interplay Between Structural Features Varies

with the Genetic Code

The structural preferences are not expected to be inde-

pendent of each other. Figure 3 shows the interdependence

of aggregation propensity with disorder and TMH-forming

tendency for random sequences translated from GC40-50-

60 segments with each of the four genetic codes investi-

gated. For STANDARD proteins, there is a clear trend for

less disordered proteins to potentially exhibit higher

aggregation propensity, which is also observed for

EARLY10 and EARLY4 proteins. We note that these

trends are much less clear when FoldAmyloid and IUPred

predictions are not considered. The predictions for the

EARLY4 CHPfreq and Cfreq sets revealed properties

distinct from all other sets investigated. For STANDARD

and EARLY10 proteins, higher TMH propensity implies

higher aggregation potential but not vica versa. Interest-

ingly, this trend is also observable for the Cfreq and

CHPfreq EARLY4 data sets but not for any other EARLY

set. In general, the low TMH propensity observed for

EARLY6 and EARLY4 sequences precludes the identifi-

cation of clear trends.

Discussion

We have generated and analyzed hypothetical protein

sequences by translating random DNA segments of varying

GC-content using different proposed ancestral genetic

codes. Our approach corresponds to a first-approximation

simulation of a scenario for a protein emerging de novo

from a previously non-coding DNA segment (Knowles and

McLysaght 2009; Guerzoni and McLysaght 2011; Tautz

and Domazet-Lošo 2011) at a specific stage of the evolu-

tion of the genetic code. Naturally, the first translated RNA

molecules might have had other functions besides encoding

proteins, e.g., we speculate that some of them could be

reminiscent of today’s tmRNAs (Janssen and Hayes 2012),

etc., thus they almost certainly were non-random. Never-

theless, we assume that our random sequence sets are

suitable to investigate the differences between proteins

encoded by different early genetic codes investigated here.

It is important to note that the evolutionary stages

investigated here are incompatible with each other as the

four-residue code includes Arg and Leu that is missing

from all other codes but the standard one. Thus, it is highly

unlikely that the four codes investigated here represent

snapshots of the actual history of the evolving code. Nev-

ertheless, we do not question the relevance of any the

proposed ancient codes investigated a priori, rather, as a

starting point, we accept that all of them are based on well-

reasoned solid considerations and each of them (or stages

270 J Mol Evol (2014) 78:263–274

123



highly similar to them) might have actually existed at some

stage. We believe that our results and conclusions highlight

the importance of considering the expected structural

properties of the proteins encoded, thus, help to elucidate

relevant aspects of early protein evolution and also the

prediction approaches used.

Our results show high variability both in the perfor-

mance of the prediction algorithms used and for the eval-

uated genetic codes. Specifically, predictions yield much

more detailed results than considering only the described

propensities of the individual amino acids (Fig. 1) and

different algorithms might yield different results for the

very same sequence, the discrepancy also depending on the

set of residues used. Thus, we separate our first part of the

discussion according to two different assumptions.

Assumption 1: Our General Structural Predictions are

Valid

Here we assume that our averaged structure predictions are

valid in the sense that (1) they reproduce the trends for

proteins translated with a given genetic code according to

varying GC-content of the coding sequence and (2) they

reproduce the differences between protein sets obtained

with different genetic codes. We stress again that we do not

use the absolute propensities predicted for any given ran-

dom sequence for drawing conclusions. Moreover, one has

to be well aware of the fact that the performance of pre-

diction algorithms varies and the same sequence motif

might be predicted to have different preferences by specific

algorithms, which might or might not reflect the ability of

the given segment to interconvert between structural states

(Szappanos et al. 2010). Also, the common interpretation

of predictions, also used here, that segments can be

assigned distinct, mutually exclusive states is most likely

not generally valid because of the dynamic nature of pro-

teins (Andersen et al. 2002).

Nevertheless, accepting the above assumptions leads to

the conclusion that all three hypothetical earlier genetic

codes investigated here determine proteins with properties

markedly different from extant ones. Only EARLY10

proteins show comparable trends and variability to existing

ones in terms of the properties investigated. Even

EARLY10 proteins show higher disorder tendency and

lower aggregation propensity than STANDARD ones, and

this trend is even more marked for EARLY6 and EARLY4

proteins. Thus, we either accept that there was a stage in

protein evolution where protein disorder was prevalent

(regardless of which of the EARLY6 and EARLY4 codes

actually existed), or we question the relevance of the pro-

posed 6- and 4-residue codes as they are almost fully

incapable of producing globular and transmembrane pro-

teins, which is in apparent contradiction with the

emergence of membrane-surrounded living entities. How-

ever, this picture is more complicated by the observation

that EARLY4, Cfreq, and CHFreq sets show a higher TMH

abundance even than the STANDARD data sets. These

contradictory results give no clear clue whether a com-

partmentalization process precluded the appearance of a

primitive translation machinery (Maynard-Smith and

Szathmáry 1995) or coding for transmembrane proteins is a

late addition in the evolution of the genetic code.

We note that the relevance of intrinsic disorder in early

stages of biochemical evolution is supported by a growing

number of observations that the ability to perform enzy-

matic catalysis is not unique to well-folded globular

enzymes. Proteins in a molten globule state, as well as

partially or fully disordered polypeptides, have been shown

to catalyze reactions with an efficiency sometimes com-

parable to that of globular enzymes (Vendruscolo 2010;

Schulenburg and Hilvert 2013). Thus, despite the fact that

today protein disorder seems to be associated with higher

organism complexity, assumptions about the prevalence of

IDPs in early proteins cannot be immediately rejected on

the basis of their limited biochemical functionality.

Assumption 2: At Least Some of the Proposed Early

Genetic Codes Actually Existed

In this frame we accept that at least the EARLY10 code

represents an actual stage of the evolution of the protein

translation machinery. If so, we can conclude that

EARLY10 proteins exhibited a lower propensity to

aggregate than STANDARD proteins, thus, aggregation

was a lower risk for de novo protein evolution and gradual

optimization to avoid aggregation could have coevolved

with the extension of the genetic code.

Assuming that at least one of the earlier codes actually

existed and requiring functional diversity comparable to

extant proteins, we might call into question the validity of

predictions used. Sometimes substantial discrepancies

between different predictions already prove the difficulty

of yielding reliable estimates of such properties even if the

underlying principles have a solid physicochemical/bio-

chemical basis. Moreover, predictions are inherently opti-

mized to perform well for extant proteins, i.e., nonrandom

sequences potentially containing all 20 amino acids enco-

ded in the standard code as their training/parameter opti-

mization was based on the properties of such segments.

Thus, it might well be that there are some inherent sys-

tematical errors in our predictions when considering pro-

teins with limited amino acid alphabets.

Moreover, we—as most prediction algorithms by

default—assumed ambient conditions which might not

have been valid for earlier stages of the evolution of the

genetic code. A recent study suggested that EARLY10
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proteins might have been optimized for a high-salt envi-

ronment (Longo et al. 2013). It has also been suggested that

current algorithms might overestimate disorder content for

proteins in extremophiles (Pancsa et al., personal commu-

nication). It is also documented that ion concentrations

have substantial effects on the aggregation propensities of

proteins (Baussay et al. 2004; Song 2013), thus, the actual

risk of aggregation for ancestral proteins, especially the

EARLY10 and EARLY6 sets might be substantially higher

in a high-salt environment than predicted here.

Considering the charge-hydrophobicity plots for

EARLY6 and EARLY4 proteins, we have to assume an

even larger difference to present-day ambient conditions

for that stage of molecular evolution (Figure S3 in Online

Resource 2). Thus, the structural properties, especially the

folded-unfolded equilibrium, might have been quite dif-

ferent for such proteins than inferred from predictions

optimized for extant proteins. Nevertheless, these consid-

erations still make it unlikely that proteins with the pro-

posed EARLY4 and EARLY10 compositions could have

provided sophisticated interactions with lipid membranes

similar to extant ones. Another question is the possible

emergence of globular enzymes responsible for the bio-

synthesis of more and more complex amino acids, as these

could only consist of amino acids already available. It is

also unlikely that a highly disordered proteome could have

been a direct ancestor of modern ones, especially that today

intrinsic disorder is prevalent in organisms regarded as

having ‘‘higher complexity’’. Thus, if stages of the genetic

code like those investigated here indeed existed, the exact

nature and role of peptides and proteins encoded by them

as well as the conditions under these existed and provided

selective benefits to the organisms remain elusive. Again, if

translation was not the only source of proteins at these

stages, the problems outline here might have been not

entirely relevant.

Conclusion: Relevance of Predictions and Genetic

Codes

Investigations of protein sequences lacking the diversity of

known wild-type proteins have shown that foldable and

functional proteins can be constructed from simplified

random amino acid alphabets (Watters and Baker 2004) or

sequence-independent peptides (Milner-White and Russell

2011), providing additional support for the theory of

genetic code evolution by expansion. Our results show that

the structural diversity for proteins encoded by the

EARLY10 code approaches that of extant proteins, and this

might have been more prevalent under conditions different

from recent physiological ones. However, none of the

proposed earlier codes has this property and, if existed,

they likely exhibited significantly limited functionality

compared to extant proteins in an environment supposedly

quite different from physiological conditions today. How-

ever, accepting the RNA world as a preceding state, dis-

ordered proteins even with narrower functional arsenal

could have been a useful functional addition to the living

systems either as separate molecules or fused to RNA

(Szathmáry 1993). For example, RNA-bound small

hydrophobic peptides might have added the ability to

interact with membranes to the molecules of the RNA

world. Finally, a highly hypothetical scenario to reconcile

the high disorder content of early translated proteins with

structural and functional requirements might include a

different (e.g., abiotic) source of proteins existed in parallel

with the earliest translation apparatus. This scenario might

also be expanded as instead of stepwise addition to a

limited set, a rich source of prebiotic amino acids could

have been available for protein synthesis and the current

code reflects an optimized and narrowed state of the ori-

ginal pool. Such a hypothesis can still be compatible with

all the considerations about the optimization of the genetic

code when it reached a functional state comparable to its

extant one. A similar scenario might also partially decouple

biosynthetic problems from the evolution of the code and is

largely compatible with Carl Woese’s early suggestion on a

preliminary ambiguous code which evolved through

ambiguity reduction (Woese 1965).

One hypothetical early environment, which could also

be relevant for the EARLY10 stage of genetic code evo-

lution, might have been one with high salt concentrations.

This is supported by a recent experimental study where

mutations were introduced to resemble the amino acid

distribution of the EARLY10 code better and the result was

a halophilic protein. We note that to achieve this, the

authors have increased also the Arg content of the protein,

although neither Arg nor any other positively charged

amino acid is encoded by the EARLY10 code. The charged

single alpha-helix (CSAH) structural motif that is also

stable under a wide range of salt concentrations exhibits a

comparable abundance of negatively and positively

charged amino acids (Süveges et al. 2009; Gáspári et al.

2012). In a wider perspective which we will not discuss

further here, the requirement for the presence of Arg in

primordial proteins is a matter of debate centered on the

nucleic acid-binding capabilities of such proteins

(McDonald and Storrie-Lombardi 2010).

In summary, we propose that a genetic code similar to

the EARLY10 one could have actually existed and give

rise to proteins with a relatively wide range of structural

variability. In a transition process from that stage to the

present one which most likely included an increase of the

abundance of hydrophobic residues, a gradual optimization

of aggregation propensity, structural stability, and function

could have taken place. For the proposed earlier stages,
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however, either a protein/peptide functional repertoire or

an environment different from today is most likely required

for a viable hypothesis, or even both of these.
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