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Abstract
Background  The postsynaptic density is an elaborate protein network beneath the postsynaptic membrane 
involved in the molecular processes underlying learning and memory. The postsynaptic density is built up from the 
same major proteins but its exact composition and organization differs between synapses. Mutations perturbing 
protein: protein interactions generally occurring in this network might lead to effects specific for cell types or 
processes, the understanding of which can be especially challenging.

Results  In this work we use systems biology-based modeling of protein complex distributions in a simplified set of 
major postsynaptic proteins to investigate the effect of a hypomorphic Shank mutation perturbing a single well-
defined interaction. We use data sets with widely variable abundances of the constituent proteins. Our results suggest 
that the effect of the mutation is heavily dependent on the overall availability of all the protein components of the 
whole network and no trivial correspondence between the expression level of the directly affected proteins and 
overall complex distribution can be observed.

Conclusions  Our results stress the importance of context-dependent interpretation of mutations. Even the 
weakening of a generally occurring protein: protein interaction might have well-defined effects, and these can not 
easily be predicted based only on the abundance of the proteins directly affected. Our results provide insight on how 
cell-specific effects can be exerted by a mutation perturbing a generally occurring interaction even when the wider 
interaction network is largely similar.

Keywords  Protein complex, Mutation, Systems biology, Protein interaction network, Protein:protein interaction, 
Gillespie algorithm, Postsynaptic density, Binding affinity
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Background
The synaptic theory states that the identity of the syn-
apses in different cell types is a key component in estab-
lishing the complexity of brain functions, including 
learning and memory [1, 2] There are a number of exper-
imental observations indicating that the postsynaptic 
density (PSD), utilizing the same major constituent pro-
teins, can be highly variable depending on the abundance 
of its individual protein components [3]. The PSD is also 
capable of dynamic reorganization during the circadian 
cycle and upon stimuli [4], and its flexibility to do so has 
been proposed to play a key role in synaptic plasticity and 
network rewiring [5]. Despite our knowledge in a num-
ber of pairwise protein: protein interactions between 
postsynaptic proteins [6], the specific large-scale organi-
zation of the PSD is still largely elusive.

Mutations identified in proteins of the PSD in various 
neurological conditions might directly affect specific pro-
tein: protein interactions. Although the same proteins 
and interactions can occur in virtually all postsynaptic 
compartments, the effect of mutations is often specific 
to a brain region, to specific interaction partners or leads 
to the impairment or gain of defined functions instead of 
leading to the dysfunction of neural transmission in all or 
most cells [7]. This behavior is expected to be only inter-
pretable by taking into account the complexity of the in 
vivo conditions.

The Shank protein family contains large modular scaf-
fold proteins with both globular and long intrinsically dis-
ordered regions [8]. These proteins establish a number of 
diverse interactions with various postsynaptic proteins. 
Mutations affecting the availability and/or the structure 
of Shank proteins have been linked to many conditions 
[9] from autism spectrum disorder (ASD) [10] to Phelan-
McDermid Syndrome (PMS) [11]. In these conditions, 
Shank3 haploinsufficiency [12], caused by either the 
complete loss of a copy of the gene or by the presence of a 
function-affecting mutation, is the most prevalent cause, 
although mutations in the Shank1 and Shank2 genes can 
also cause similar, although typically milder, phenotypes.

Besides state-of-the-art microscopic techniques [13, 
14], simulation approaches might contribute to our more 
detailed understanding of the supramolecular structure 
of the PSD and its changes upon stimuli and mutations. 
We have previously described extensive simulations 
on protein complex formation using a simplified model 
of the PSD containing 7 major proteins. These simula-
tions revealed that the correspondence between protein 
component abundance and the distribution of the com-
plexes formed is nontrivial [15]. Specifically, the classi-
fication of the simulated PSDs based on the abundance 
of constituent proteins can largely differ from the classi-
fication based on the resulting protein complex distribu-
tions. Importantly, protein complexes represent a feature 

supposedly more closely linked to the biological func-
tion of the network than simple protein abundance. Our 
data set included instances of the same or similar brain 
regions with different expression levels of the individual 
proteins, and as such our previous work also models the 
effect of abundance-affecting mutations.

In this work, we address the question of whether 
hypomorphic mutations, i.e. those reducing but not 
completely abolishing a function, specifically a bind-
ing interaction, can cause measurable effects in our PSD 
model system. We have chosen the Shank1 PDZ domain 
as a model system because of its well-studied nature [16]. 
Mutations in this domain have been linked to ASD such 
as R736Q [10] and also have been identified in various 
cancers [17]. As a model hypomorphic mutation, we have 
chosen one that can be estimated to cause the decrease of 
a specific binding interaction between 2- and 10-fold. We 
use the same model system as in our previous work, com-
posed of seven major PSD proteins, except for replac-
ing Shank3 with Shank1 (NMDAR, AMPAR, PSD−95, 
SynGAP, GKAP, Homer1, Shank1) [15]. As previously, 
we performed our simulations on more than 500 brain 
regions with different protein levels [18].

For all simulations, the same set of interactions is 
defined, except for the one affected by the mutation, giv-
ing rise to the „wild type” and „mutated” scenarios. For 
each region, the input is the abundance of each protein 
and the ouput is the number of the different protein 
complexes formed. Our results suggest that weakening a 
single well-defined interaction does not affect the over-
all distribution of complexes in most investigated brain 
regions. However, in a small number of cases, the most 
informative protein complexes - defined based on their 
contribution to the overall diversity of the PSD com-
plexes - show a significant change in their abundance. 
These results indicate that even when the same set of 
proteins is involved, the biological effect of a mutation 
can be highly specific depending on the cellular context.

Methods
Overview of the simulations
The aim of our simulations was to estimate the distribu-
tions of protein complexes formed by a set of proteins 
with different abundances (copy numbers). The set of 
proteins was a highly simplified PSD model including 7 
major proteins, two receptors (AMPAR, NMDAR) and 
five scaffold proteins (Homer1, GKAP, SynGAP, and 
Shank1) with well-defined interactions between them 
(Tables S1, S2, S3).

For the simulation of protein complex formation, we 
have used an agent-based simulation tool (Cytocast), also 
applied in our previous study [15]. The underlying prin-
ciple is the Gillespie algorithm, a related implementation 
of which was used to predict COVID-19 outcomes [19]. 
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A previous implementation (SiComPre) was shown to 
effectively model protein complex distribution in whole 
cells [20].

Data sets, setup and reproducibility
Overall, we have simulated protein complexes in 524 dif-
ferent data sets originating from 27 brain region types, as 
in our previous work [15] (Table S4). The source data sets 
contain mRNA expression levels [18] that we have trans-
lated into protein abundance by linear scaling of the val-
ues to the copy number of PSD-95 pporteins as described 
previously [15] (Table S5). We note that mRNMA levels 
can be used to approximate cellular protein abundance 
[21, 22]. Still, ours is a highly simplified approach that 
does not take any other factors like protein degradation 
into account, but is sufficient for our modeling purposes 
to obtain data sets with sufficient variation. The average 
copy numbers of the individual proteins, serving as input 
for the simulations, show a high variance (Table  1). It 
should be noted that no information about the individu-
als from which the data are derived is available, whether 
they can be considered as in a healthy or diseased condi-
tion. The raw input abundances can be found in the Sup-
plementary material (Table S5). Dissociation constants 
were taken from the data described in the literature [23]. 
In our simulations, the dissociation constant was imple-
mented by adjusting the unbinding rate as a result of a 
mutation, while not changing the binding rates. To esti-
mate the reproducibility of the simulations, 40 simula-
tions were performed for each data set. This number was 
deemed sufficient in terms of reproducibility, as with 40 
repetitions we have reached a variance of 1 that did not 
improve upon more repetitions. In addition, Shapiro-
Wilk test for normality, performed for the abundance 
of the most informative complex (see below) with Ben-
jamini-Hochberg correction [24] indicated that the nor-
mal distribution of complex abundances can be assumed 
(can not be rejected) in all 524 regions when using 40 
simulations.

To make testing our calculations and setups possible, 
we have set up a web interface, available at https://psd-
complexsim.cytocast.com.

Choice and modeling of the Shank1 R743H mutation
In order to use a well-studied interaction, we have cho-
sen the Shank1 PDZ domain and its interaction with 
the C-terminus of GKAP. The Shank1 PDZ is a globu-
lar domain that has been characterized extensively [25]. 
Moreover, several mutations in the Shank1 PDZ domain 
has been observed in patients with Autism Spectrum 
Disorder (ASD) [10]. There are also mutations for this 
domain listed in the COSMIC database [17], and as these 
are available in an organized format, we decided to use 
this source to explore several mutations.

Our goal was to model a moderate yet measurable 
effect of a hypomorphic mutation that weakens but does 
not abolish binding. It is not trivial to estimate the per-
turbation effect of a mutation, especially for one out-
side the primary ligand binding site, Therefore, we have 
used the change in domain stability as predicted by the 
NeEMO method [26] and have used this change to esti-
mate the weakening of the interaction by assuming less 
stable apo and holo structures.

For our modeling purposes, we have chosen the R743H 
mutation for which we have estimated a 5.5-fold decrease 
in the binding affinity, modeled as a 5.5-fold increase for 
the dissociation rate of the Shank1 PDZ: GKAP interac-
tion in our setup. This value is regarded as a good com-
promise between a minimally observable 2-fold change 
and changing the value by one order of magnitude, a 
more pronounced change. The arginine affected by this 
mutation is located on the C-terminal end of helix 2, 
whereas the R736Q mutation, described in ASD, alters 
an arginine at the N-terminus of the same helix (Fig. 1a). 
Both arginines point away from the immediate ligand 
binding site, thus, both mutations are expected to per-
turb the binding interaction indirectly.

Analysis of the simulation results
In our system composed of multivalent proteins, the 
identity of the protein complexes formed is not only 
determined by their composition but also the exact topol-
ogy, i.e. how the constituent proteins interact with each 
other, rather also by the binding sites actually participate 
in the interactions. Complexes with the same protein 
composition but different binding patterns should there-
fore be distinguished during the analysis of the simula-
tion results.

All protein complexes observed were identified and 
enumerated, and each was assigned a unique identifier. 
The simulated results for each input data set can be rep-
resented by a point in a multidimensional space where 
each coordinate represents the abundance of a given pro-
tein complex. Thus, a protein complex distribution can 
be described as the linear combination of the emerging 
protein complexes (Eq. 1):

Table 1  Statistics of input protein abundance derived from 
mRNA expression levels from reference [18]
Protein Minimum Maximum Average Deviation
NMDAR 0 95 16.84 17.87
AMPAR 1 688 126.81 78.39
PSD-95 36 1067 328.09 159.21
SynGAP 11 359 1102.21 60.13
GKAP 2 367 82.62 65.50
Shank1 1 388 69.20 59.40
Homer1 1 124 21.98 17.20

https://psdcomplexsim.cytocast.com
https://psdcomplexsim.cytocast.com
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Fig. 1  (a) Position of the mutation selected (R743H, green) and a similar one reported in ASD (R736Q, blue) on the ribbon representation of the Shank1 PZ 
domain (PDB ID 6YWZ). Both arginines are located on the α2 helix flanking the ligand binding groove. Principal component analysis of the obtained pro-
tein complex distributions for (b) the wild-type and (c) the mutant scenarios investigated. Different colors denote different brain regions according to the 
key at the bottom. (d) Schematic depiction of the most informative complex according to the PCA (AMPAR/PSD-95/SynGAP). (e) P-values describing the 
change upon the mutation relative to the wild-type, the value for the most informative complex is shown in increasing order from left to right, colored by 
the region type (key at the bottom) The green line denotes the 0.05 significance limit while the red line the limit of 0.0024 obtained using the Benjamini-
Hochberg correction. (f) Abundance of Shank1 and GKAP, the two proteins in the interaction affected by the mutation, in the input data sets. Red circles 
indicate data sets where the abundance of the most informative complex changed significantly in the output using the Benjamini-Hochberg correction
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c ∈ Rn, c =

n∑

i=1

αipi � (1)

Where ai is the abundance of complex i and pi is a base 
(unit) vector along axis i representing the copy number of 
the ith protein complex.

Each region can exhibit a different complex distribu-
tion. To analyze the differences between regions and sim-
ulations, we used principal component analysis. In the 
PCA outputs, the points represent the different complex 
abundances for each region in the dimension-reduced 
space allowing the largest differences between the brain 
regions to be visualized. Originally, each region could be 
assigned a vector with as many dimensons as complexes, 
with a value for the abundance of each complex. Our data 
matrix X used for PCA in our study has dimensions of 
524 (regions) by 222,784 (complex types), with a rank of 
524. This setup ensures that the PCA can appropriately 
capture the variability and structure within our data, 
with 524 independent components reflecting the rank 
of the matrix. To get more insight into the role of indi-
vidual complexes in the PCA, we have determined the 
importance of each complex by combining two measures 
obtained from the standard principal component analy-
sis: (1) the fraction of variability explained by the given 
principal component and (2) the contribution of the 
abundance of the protein complex investigated to each of 
the PCs. In this way it is possible to calculate how rele-
vant and informative the original base vectors (represent-
ing complex abundances) are in the comparison of brain 
regions.

	
r ∈ Rn, r =

∑n

i=1

λi∑n
j=1 |uij|ui

� (2)

Where r is an n-dimensional vector containing the rel-
evance of (variance explained by) each complex, λi is the 
relevance of the i-th eigenvector, uij is the j-th coordinate 
(component in the original space with a dimension for 
each complex) of the i-th eigenvector ui.

Statistical comparison of complexes and regions
A pairwise T-test is a classical statistic usually chosen 
when only one change - here the mutation - is created 
in the system and the question is how the change affects 
the mean value. The null hypothesis is that the mean 
abundance of a complex (in the wild-type and mutant 
scenario) is the same within a certain level of signifi-
cance. Thus the alternative hypothesis is that the mean 
abundance of a given complex formed from the protein 
set with the wild-type and the mutant proteins differ 
significantly.

The calculations were performed as implemented in 
the scipy package (method scipy.stats.ttestrel), where the 
t-score is calculated as in Eq. 3 [27]:

	
tscore =

mean (a − b)
σ

� (3)

where a and b are 40-length arrays of the abundances of 
the given complex for wild-type and mutant simulations 
respectively and is the standard error.

The p-value is calculated from the t-score based on the 
alternative hypothesis type that is two-sided:

	 p = 2cdf t,39 (− |tscore|) � (4)

where cdf is the cumulative density function for the 
T-test with the degree of freedom 39 (for 40 repetitive 
simulations).

Given that the abundance of each complex is averaged 
separately during the simulation, the T-test shows which 
hypothesis we can accept for the abundance only of the 
given complex (pi).

Results
We ran several simulations based on the Gillespie algo-
rithm. The inputs of the simulations are protein abun-
dances and parameters for simulating protein complex 
formation dynamics, along with the descriptions of the 
possible pairwise interactions. Protein abundance data, 
being highly variable as shown in Table  1 along with at 
PCA analysis in Figure S1. The outputs are protein com-
plexes and their abundances for each brain region. In our 
simulation outputs, we have observed the formation of 
222,784 different complexes.

Identification of the most informative complex
Principal component analyses (PCA, Fig.  1b, c) show 
which complexes are the most informative from the point 
of view of distinguishing brain regions. The first two 
principal components for both the wild-type and mutant 
scenarios cover 44% and 24% of the full variance of the 
outputs, respectively. The first principal axis is domi-
nated by the abundance of the AMPAR/PSD−95 (id:12) 
complex, whereas the second one by the PSD−95/Syn-
GAP (id:8) complex.

The most informative complex overall – with the 
highest contribution considering all principal compo-
nents and the variance explained by them – is AMPAR/
PSD−95/SYNGAP (id:5) (Fig.  1d) with a contribution 
of 19%. In comparison, the importance of the average 
complex is very small, approximately 4.48e−06 and the 
median is 9.98e−08. This is because of the high number 
of possible complexes that can form.
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Complex composition and relevance
Common proteins in the complexes formed are PSD-95, 
AMPAR and SYNGAP. PSD-95 appears in all the top 10 
most informative complexes, indicating its central role in 
complex formation. AMPAR is present in 6 out of the 10 
complexes, showing its frequent participation, whereas 
SYNGAP is involved in 5 of the complexes, highlighting 
its significance. This pattern suggests a common scaffold 
or core structure. Despite the recurrence of certain pro-
teins, the specific combinations and additional proteins 
like NMDAR and GKAP create diverse structures. Nota-
bly absent from the top 10 complexes are Shank1 and 
Homer1, proteins known for their ability to polymerize 
or heterotetramerize. Their absence suggests that Shank1 
and Homer1 and the complexes that have Shank1 and 
Homer1 are involved in forming much larger complexes. 
These larger complexes tend to have lower individual 
occurrences, leading to reduced overall variance and rel-
evance in this specific analysis.

Overall complex distribution is primarily determined by 
protein availability
Principal component analysis of the simulation results for 
the wild-type and mutant scenarios show a very similar 
overall picture. The two PCA plots can directly be com-
pared as the axes are the same even in the two indepen-
dent PCA outputs. The data points corresponding to the 
wild-type and mutant cases move only minimally relative 
to each other (Table S6). The average distance between 
wild-type and mutant regions is 1.5 ± 0.8.

We note that our PCA results do not generally separate 
the source brain regions with the exception of the cere-
bellar cortex-type regions that are concentrated at a dis-
tinct region from the others (Fig. 1b, c).

Our results suggest that the overall protein complex 
distribution is determined by the availability of the indi-
vidual proteins and the presence of a weakening muta-
tion does not cause substantial global effects. This is in 
line with the system retaining its general functionality. In 
order to analyze the effect of the mutation in more detail, 
we have investigated the abundance of the individual pro-
tein complexes.

The significance of changes in the formation of the 
most informative complex does not seem to be closely 
related to the abundance of Shank1 and GKAP, the 
interaction of which is directly affected by the mutation 
(Fig.  1f ). The only observable pattern is that no signifi-
cant changes are found in regions with high abundance 
of both proteins. On the other hand, many regions with 
low or moderate abundance of these two proteins also 
do not show a significant change. This observation rein-
forces our conclusion that the availability of partners in 
the wider interaction network has a profound effect on 
complex formation.

Weakening the Shank: GKAP interaction causes subtle 
effects in well-defined regions
To analyze the effect of the mutation introduced, we have 
compared the complex distributions in each region with 
the wild-type simulations. At the level of individual com-
plexes, there are some exhibiting significant changes in 
the mutated scenario relative to the wild-type one.

For larger supercomplexes, even small numerical 
change in their abundance can be significant due to the 
very low probability of their formation. Therefore, in 
the case of supercomplexes, even the appearance of one 
complex can be considered relevant.

Importantly, the p-values of the most informative com-
plex AMPAR/PSD−95/SynGAP drop below 0.0024 for 
some of the resulting data sets (Fig. 1e, Table S8). This is 
somewhat surprising as this complex does not contain 
either of the partners of the interaction affected by the 
mutation. Thus, it is worth investigating how the abun-
dance of the individual partner proteins Shank1 and 
GKAP influence the changes observed in the formation 
of AMPAR/PSD−95/SynGAP complex. We have plotted 
the input abundance of Shank1 and GKAP vs. the p-value 
of the most informative complex (Fig. 1e). It is apparent 
that significant changes are not confined to either the 
high- or the low-abundance regions of the two affected 
proteins (Fig.  1f ), suggesting that the complex interplay 
between the interactions of multiple proteins is behind 
the observed phenomenon.

As a result of the mutation, we would expect the com-
plexes in the layer above GKAP, i.e. those containing 
the membrane receptors and PSD−95, to become more 
favored since the interaction between GKAP and Shank1 
connects these complexes to the larger supercomplexes 
where Shank1 polymerizes. This effect is observed only 
in the cerebellar cortex regions and to a small extent. 
Some example abundances are shown in Figure S2.

The abundances change from zero to 1 for the com-
plexes SynGAP/PSD−95/GKAP (id:9) and AMPAR/
PSD−95/GKAP (id:15). However, overall complex abun-
dances remain highly similar to the wild-type even in the 
regions with the smallest p-values.

Curiously, the regions with the lowest p-values all 
belong to the cerebellar cortex. The structure and levels 
of the cerebellum are significantly different compared to 
the cerebrum, which also means differences in the main 
neuron types [28]. The differences have already been 
demonstrated for different Shank3, Shank2 abundances 
in different layers in the cerebellum [29], and the different 
contributions of the cerebellum to ASD [30]. Naturally, 
we do not claim that the observed low p-values directly 
reflect these aspects, but it cannot escape our attention.

To get further insight into the changes of com-
plex abundance, we have selected two regions: H376.
IIIB.53M1C-S1C exhibits the lowest nonzero p-value for 
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the most informative complex (AMPAR/PSD−95/Syn-
GAP) (Figure S3).

In these two region, the average abundance of the com-
plex AMPAR/PSD−95/SynGAP (id:5) changes from 306 
to 301 upon the mutation. In addition, the abundance of 
the related complex AMPAR/PSD−95/SynGAP/GKAP 
increases. Thus, the decrease can be partially attributed 
to the fact that the complex AMPAR/PSD−95/SynGAP 
(id:5) associates with GKAP with a higher probability 
than in the case of the wild-type. The greater availability 
of uncomplexed GKAP can be explained by the weak-
ened Shank1:GKAP connection.

On the other hand, for the two regions with the high-
est p-values (H376.XI.50HIP and H376.VIII.53MD), the 
abundance of the complex AMPAR/PSD−95/SynGAP 
does not change at all (Figure S4).

Discussion
Justification of our approach
Our model of only seven PSD proteins and without any 
specific spatial organization is definitely a highly simpli-
fied one that is far from the actual biological complexity 
of the postsynapse. In addition, for simplicity, we con-
sider a situation that corresponds to a homozygous sce-
nario, i.e. where either only wild-type or mutant Shank1 
is present but not both. Last but not least, we have mod-
eled only one well-defined effect of the mutation, ignor-
ing possible pleiotropic effects like the alteration of the 
expression level of multiple proteins as observed for 
several Shank mutations [31]. Thus, it is not expected 
that the obtained protein complex distributions can be 
directly compared to the in vivo situations. Modeling all 
these aspects with acceptable accuracy would require 
much more data than currently available. However, we 
argue that our model system, focusing on a well-defined 
set of major PSD proteins and interactions is complex 
enough to capture general aspects of the behavior of 
elaborate protein networks with a multitude of binding 
interactions while remaining manageable in terms of data 
analysis as the number of possible protein complexes 
is not extremely high. On the other hand, mechanis-
tic linking of genotypes with phenotypes, with different 
genotypes leading to similar phenotypes, is only possible 
via a combination of experimental data and modeling 
approaches.

The fact that the distribution of complex formation is 
not distinguishable in different brain regions and does 
not significantly change upon mutation does not neces-
sarily indicate that the results are random. Here are some 
key points to consider: The cerebellum being isolated, 
we found distinguishable patterns, suggesting that the 
results are not entirely random. If the results were purely 
random, we would expect more significant changes 
across all regions, including the cerebellum. The physical 

binding model used in the study is deterministic, mean-
ing that the processes it simulates are governed by spe-
cific physical laws. Only the diffusion process involves 
random elements, which are based on probabilistic asso-
ciations and dissociations. If the dependence on inputs 
were truly random, it would undermine the reproducibil-
ity of the results. However, the model’s consistency with 
physical laws supports its reliability. The reproducibility 
of the results across different simulations and conditions 
strengthens the argument against randomness. Consis-
tent findings across various simulations suggest that the 
observed patterns are driven by underlying biological 
processes rather than random fluctuations.

Experimental investigation of the dependence of pro-
tein complex formation on the availability and binding 
properties of its constituent proteins would be a chal-
lenge. In vitro reconstruction of multicomponent sys-
tems is far from routine but not unprecedented [32]. 
However, quantitative analysis of a number of different 
species formed would require elaborate methods, most 
likely based on mass spectrometry. In addition, the use 
of full-length proteins, especially membrane receptors 
might not be feasible, requiring the design of constructs 
containing only the relevant interaction sites. In an in 
vivo setting, immunoprecipitation or high-resolution 
microscopy like 3D z-stack STORM could be used at the 
level of individual synapses [33]. However, for a multi-
component complex the different fluorescent labeling of 
the constituent proteins might be an issue along with the 
quantification of the individual proteins and conducting 
the experiments in diverse brain regions.

Weakening a specific interaction can cause limited but 
significant changes
Mechanistic linking mutations to the phenotypes they 
cause is many times a non-trivial task, especially when 
the mutation perturbs a highly complex protein net-
work. This phenomenon is well known in the case of 
neurodevelopmental disorders, where similar observed 
phenotypes can be caused by a number of different muta-
tions. For example, a recent recommendation for Phelan-
McDermid syndrome puts emphasis on the underlying 
genetic cause as the phenotypes are largely non-specific 
and can generally occur in a number of neurodevelop-
mental diseases [11].

The specific effect of mutations can be enigmatic, espe-
cially when they affect proteins present in many differ-
ent tissues. This is especially true for cell types in which 
even the major partners and interactions are expected to 
be the same. The diversity of neurons in terms of the dif-
ferent abundance of postsynaptic proteins offers a unique 
opportunity to explore the effect of specific mutations 
in a complex but still simplified multicomponent system 
having the same set of building blocks.
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Our simulation-based approach, focusing on the for-
mation of protein complexes as defined by the abun-
dance of their constituent proteins and their interactions, 
reveals that the effect of a mutation weakening a specific 
interaction heavily depends on the availability of all inter-
action partners in the system. The complex interdepen-
dence of the interactions leads to a scenario where the 
overall changes in protein complex distributions are gen-
erally subtle, the formation of only a few complexes are 
significantly affected and this effect can be confined to a 
well-defined set of cells with specific protein abundance. 
While common wisdom could suggest that protein com-
plexes containing the mutated proteins are most affected 
and in cells where these are abundant, our results indi-
cate that cells with the lowest number of affected proteins 
can also be among the vulnerable ones, and the protein 
associates mostly affected are linked only indirectly to the 
actually weakened interaction. Our simulations suggest 
that the cerebellum may be an involved brain region (Fig-
ure S4), aligning with findings in the literature [28–30].

Conclusions
Our results suggest that even for a ubiquitous occurring 
interaction, effects can be highly dependent on the wider 
context, including the availability of all components in a 
larger protein-protein interaction network. Our model-
ing, however simplified, indicate that the affected cells 
can not be easily predicted based purely on the abun-
dance of the interaction partners. Modeling different 
scenarios with distinct protein abundances also suggest 
that mutations that (also) affect protein expression levels 
may have a more serious effect than those that moder-
ately perturb a given interaction. In addition, the effect 
of redundancy in the system (e.g. Shank1-Shank3) might 
not only cause individual isoforms directly take over each 
other’s roles, but rather they reduce intermediary effects, 
e.g. here, the change in the frequency of the most impor-
tant complex would always be moderated by the presence 
of a protein with a binding pattern similar to that of the 
mutant. We believe that with the availability of more data 
from single-cell studies and combining these with simu-
lations like the one presented here, we might get closer to 
the understanding of cell-to-cell variability in healthy and 
diseased conditiions.

Abbreviations
PSD	� Postsynaptic density
ASD	� Autism spectrum disorder
PMS	� Phelan-McDermid Syndrome
PCA	� Principal component analysis

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12868-024-00880-1.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Not applicable.

Author contributions
ZG and AC-N conceived and supervised the study, MM and ZG designed 
simulations, MM, ÁW, KF-M and BMK-H performed data collection, setup, 
running and analysis of simulations, MM, GZ and AC-N wrote the manuscript.

Funding
Open access funding provided by Pázmány Péter Catholic University. The 
authors acknowledge the support of the National Research, Development and 
Innovation Office – NKFIH -- through grants no. TKP2021-EGA-42 and OTKA 
137947.
Open access funding provided by Pázmány Péter Catholic University.

Data availability
All data used for the simulations during this study are included in this 
published article and its supplementary information files. To make testing our 
calculations and setups possible, we have set up a web interface, available 
at https://psdcomplexsim.cytocast.com. Other data are available from the 
corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
ÁW, BK-H and AC-N reporting that they have financial and business interests 
in Cytocast Kft. that may be affected by the research reported in the enclosed 
paper. All other authors declared no competing interests.

Received: 9 February 2024 / Accepted: 28 June 2024

References
1.	 Grant SGN. The synaptomic theory of behavior and brain disease. Cold 

Spring Harbor Symp Quant Biol. 2018a;83:45–56. https://doi.org/10.1101/
sqb.2018.83.037887.

2.	 Grant SGN. Synapse molecular complexity and the plasticity behaviour prob-
lem. Brain Neurosci Adv. 2018b. https://doi.org/10.1177/2398212818810685.

3.	 Grant SGN. Synapse diversity and synaptome architecture in human genetic 
disorders. Hum Mol Gen. 2019;28(R2):R219–25. https://doi.org/10.1093/hmg/
ddz178.

4.	 Jasinska M, Woznicka O, Jasek-Gajda E, Lis GJ, Pyza E, Litwin JA. Circadian 
changes of dendritic spine geometry in mouse barrel cortex. Front Neurosci. 
2020;14:57881. https://doi.org/10.3389/fnins.2020.578881.

5.	 Zeng M, Chen X, Guan D, Xu J, Wu H, Tong P, Zhang M. Reconstituted post-
synaptic density as a molecular platform for understanding synapse forma-
tion and plasticity. Cell. 2018;174:1172–e118716. https://doi.org/10.1016/j.
cell.2018.06.047.

6.	 Kalman ZE, Dudola D, Mészáros B, Gáspári Z, Dobson L. PSINDB: the postsyn-
aptic protein–protein interaction database. Database. 2022; 2022:baac007. 
https://doi.org/10.1093/database/baac007.

7.	 Mameza MG, Dvoretskova E, Bamann M, Hönck H-H, Güler T, Boeckers TM, 
Schoen M, Verpelli C, Sala C, Barsukov I, Dityatev A, Kreienkamp H-J. SHANK3 
gene mutations associated with autism facilitate ligand binding to the 
shank3 ankyrin repeat region. J Biol Chem. 2013;288:26697–708. https://doi.
org/10.1074/jbc.m112.424747.

https://doi.org/10.1186/s12868-024-00880-1
https://doi.org/10.1186/s12868-024-00880-1
https://doi.org/10.1101/sqb.2018.83.037887
https://doi.org/10.1101/sqb.2018.83.037887
https://doi.org/10.1177/2398212818810685
https://doi.org/10.1093/hmg/ddz178
https://doi.org/10.1093/hmg/ddz178
https://doi.org/10.3389/fnins.2020.578881
https://doi.org/10.1016/j.cell.2018.06.047
https://doi.org/10.1016/j.cell.2018.06.047
https://doi.org/10.1093/database/baac007
https://doi.org/10.1074/jbc.m112.424747
https://doi.org/10.1074/jbc.m112.424747


Page 9 of 9Miski et al. BMC Neuroscience           (2024) 25:32 

8.	 Kursula P. Shanks — multidomain molecular scaffolds of the postsynaptic 
density. Curr Opin Struct Biol. 2019;54:122–8. https://doi.org/10.1016/j.
sbi.2019.01.007.

9.	 Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: 
phenotypes, treatment strategies, and translational implications. J Neurodev 
Disord. 2021;13:55. https://doi.org/10.1186/s11689-021-09397-8.

10.	 Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta- 
analysis of SHANK mutations in autism spectrum disorders: a gradient of 
severity in cognitive impairments. PLoS Genet. 2014;10:e1004580. https://doi.
org/10.1371/journal.pgen.1004580.

11.	 Schön M, Lapunzina P, Nevado J, Mattina T, Gunnarsson C, Hadzsiev K, et 
al. Definition and clinical variability of SHANK3-related phelan-McDermid 
syndrome. Eur J Med Genet. 2023;66:104754. https://doi.org/10.1016/j.
ejmg.2023.104754.

12.	 Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a common but under-
diagnosed highly penetrant monogenic cause of autism spectrum disorders. 
Mol Autism. 2013;4:17. https://doi.org/10.1186/2040-2392-4-17.

13.	 Sarkar D, Kang J, Wassie AT, Schroeder ME, Peng Z, Tarr TB, et al. Revealing 
nanostructures in brain tissue via protein decrowding by iterative expansion 
microscopy. Nat Biomed Eng. 2022;6:1057–73. https://doi.org/10.1038/
s41551-022-00912-3.

14.	 Ramsey AM, Tang A-H, LeGates TA, Gou X-Y, Carbone BE, Thompson SM, et al. 
Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. 
Sci Adv. 2021;7:eabf3126. https://doi.org/10.1126/sciadv.abf3126.

15.	 Miski M, Keömley-Horváth BM, Megyeriné DR, Csikász-Nagy A, Gáspári Z. 
Diversity of synaptic protein complexes as a function of the abundance 
of their constituent proteins: a modeling approach. PLoS Comp Biol. 
2022;18:e1009758. https://doi.org/10.1371/journal.pcbi.1009758.

16.	 Ali M, McAuley MM, Lüchow S, Knapp S, Joerger AC, Ivarsson Y. Integrated 
analysis of Shank1 pdz interactions with c-terminal and internal bind-
ing motifs. Curr Res Struct Biol. 2021;3:41–50. https://doi.org/10.1016/j.
crstbi.2021.01.001.

17.	 Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the 
catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018;47:D941–7. 
https://doi.org/10.1093/nar/gky1015.

18.	 Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional 
landscape of the prenatal human brain. Nature. 2014;508:199–206. https://
doi.org/10.1038/nature13185.

19.	 Reguly Z, Csercsik D, Juhász J, Tornai K, Bujtár Z, Horváth G, et al. Microsimula-
tion based quantitative analysis of COVID-19 management strategies. PLoS 
Comp Biol. 2022;18:e1009693. https://doi.org/10.1371/journal.pcbi.1009693.

20.	 Rizzetto S, Priami C, Csikász-Nagy A. Qualitative and quantitative protein 
complex prediction through proteome-wide simulations. PLoS Comp Biol. 
2015;11:e1004424. https://doi.org/10.1371/journal.pcbi.1004424.

21.	 Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels 
on mRNA abundance. Cell. 2016;165:535–50. https://doi.org/10.1016/j.
cell.2016.03.014.

22.	 Edfors F, Danielsson F, Hallström BM, Käll L, Lundberg E, Pontén F, Forsström 
B, Uhlen M. Gene-specific correlation of RNA and protein levels in human 

cells and tissues. Mol Syst Biol. 2016;12:883. https://doi.org/10.15252/
msb.20167144.

23.	 Feng Z, Chen X, Zeng M, Zhang M. Phase separation as a mechanism for 
assembling dynamic postsynaptic density signalling complexes. Curr Opin 
Neurobiol. 2019;57:1–8. https://doi.org/10.1016/j.conb.2018.12.001.

24.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289–300. 
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

25.	 Lee JH, Park H, Park SJ, Kim HJ, Eom SH. The structural flexibility of the 
Shank1 PDZ domain is important for its binding to different ligands. 
Biochem Biophys Res Commun. 2011;407:207–12. https://doi.org/10.1016/j.
bbrc.2011.02.141.

26.	 Giollo M, Martin AJ, Walsh I, Ferrari C, Tosatto SC. NeEMO: a method 
using residue interaction networks to improve prediction of protein 
stability upon mutation. BMC Genomics. 2014;15(Suppl4):S7. https://doi.
org/10.1186/1471-2164-15-s4-s7.

27.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et 
al. SciPy 1.0: Fundamental algorithms for Scientific Computing in Python. Nat 
Methods. 2020;17:261–72. https://doi.org/10.1038/s41592-019-0686-2.

28.	 Sudarov A. Defining the role of cerebellar purkinje cells in autism spec-
trum disorders. Cerebellum. 2013;12:950–5. https://doi.org/10.1007/
s12311-013-0490-y.

29.	 Wilson HL. Molecular characterisation of the 22q13 deletion syndrome sup-
ports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neu-
rological symptoms. J Med Genet. 2003;40:575–84. https://doi.org/10.1136/
jmg.40.8.575.

30.	 Tsai PT. Autism and cerebellar dysfunction: evidence from animal models. 
Semin Fetal Neonatal Med. 2016;21:349–55. https://doi.org/10.1016/j.
siny.2016.04.009.

31.	 Sungur AÖ, Redecker TM, Andres E, Dürichen W, Schwarting RKW, del Rey A, 
Wöhr M. Reduced efficacy of d-amphetamine and 3, 4-methylenedioxymeth-
amphetamine in inducing hyperactivity in mice lacking the postsynaptic 
scaffolding protein SHANK1. Front Mol Neurosci. 2018;11:419. https://doi.
org/10.3389/fnmol.2018.

32.	 Zeng M, Chen X, Guan D, Xu J, Wu H, Tong P, Zhang M. Reconstituted 
postsynaptic density as a molecular platform for understanding synapse 
formation and plasticity. Cell. 2018;174:1172–87. https://doi.org/10.1016/j.
cell.2018.06.047.

33.	 Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, 
Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, 
Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic 
signaling. Sci Adv. 2024;10:eado0077. https://doi.org/10.1126/sciadv.ado0077.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1016/j.sbi.2019.01.007
https://doi.org/10.1016/j.sbi.2019.01.007
https://doi.org/10.1186/s11689-021-09397-8
https://doi.org/10.1371/journal.pgen.1004580
https://doi.org/10.1371/journal.pgen.1004580
https://doi.org/10.1016/j.ejmg.2023.104754
https://doi.org/10.1016/j.ejmg.2023.104754
https://doi.org/10.1186/2040-2392-4-17
https://doi.org/10.1038/s41551-022-00912-3
https://doi.org/10.1038/s41551-022-00912-3
https://doi.org/10.1126/sciadv.abf3126
https://doi.org/10.1371/journal.pcbi.1009758
https://doi.org/10.1016/j.crstbi.2021.01.001
https://doi.org/10.1016/j.crstbi.2021.01.001
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1038/nature13185
https://doi.org/10.1038/nature13185
https://doi.org/10.1371/journal.pcbi.1009693
https://doi.org/10.1371/journal.pcbi.1004424
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.15252/msb.20167144
https://doi.org/10.15252/msb.20167144
https://doi.org/10.1016/j.conb.2018.12.001
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.bbrc.2011.02.141
https://doi.org/10.1016/j.bbrc.2011.02.141
https://doi.org/10.1186/1471-2164-15-s4-s7
https://doi.org/10.1186/1471-2164-15-s4-s7
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s12311-013-0490-y
https://doi.org/10.1007/s12311-013-0490-y
https://doi.org/10.1136/jmg.40.8.575
https://doi.org/10.1136/jmg.40.8.575
https://doi.org/10.1016/j.siny.2016.04.009
https://doi.org/10.1016/j.siny.2016.04.009
https://doi.org/10.3389/fnmol.2018
https://doi.org/10.3389/fnmol.2018
https://doi.org/10.1016/j.cell.2018.06.047
https://doi.org/10.1016/j.cell.2018.06.047
https://doi.org/10.1126/sciadv.ado0077

	﻿Simulated complexes formed from a set of postsynaptic proteins suggest a localised effect of a hypomorphic Shank mutation
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Overview of the simulations
	﻿Data sets, setup and reproducibility
	﻿Choice and modeling of the Shank1 R743H mutation
	﻿Analysis of the simulation results
	﻿Statistical comparison of complexes and regions

	﻿Results
	﻿Identification of the most informative complex
	﻿Complex composition and relevance
	﻿Overall complex distribution is primarily determined by protein availability
	﻿Weakening the Shank: GKAP interaction causes subtle effects in well-defined regions

	﻿Discussion
	﻿Justification of our approach
	﻿Weakening a specific interaction can cause limited but significant changes

	﻿Conclusions
	﻿References


