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Abstract
The complex dynamics of biological systems is primarily driven by molecular interactions that underpin the regulatory

networks of cells. These networks typically contain positive and negative feedback loops, which are responsible for switch-

like and oscillatory dynamics, respectively. Many computing systems rely on switches and clocks as computational

modules. While the combination of such modules in biological systems leads to a variety of dynamical behaviours, it is also

driving development of new computing algorithms. Here we present a historical perspective on computation by biological

systems, with a focus on switches and clocks, and discuss parallels between biology and computing. We also outline our

vision for the future of biological computing.
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1 History of understanding biological
computation

In the last 50 years, biology has inspired computing in

several ways (Navlakha and Bar-Joseph 2011; Cardelli

et al. 2017). During this time, computational thinking has

also improved our understanding of biological systems

(Bray 1995; Goldbeter 2002; Nurse 2008). Using principles

from chemistry, physics and mathematics, we have

understood that the highly complex behaviour of biological

systems is caused by a multitude of coupled feedback and

feed-forward loops in the underlying molecular regulatory

networks (Alon 2007; Tyson and Novák 2010). In partic-

ular, we have learned that positive and negative feedback

loops are responsible for driving biological switches and

clocks, respectively (Tyson et al. 2008). We have under-

stood much about the behaviour of these basic units of

biological computation (Ferrell 2002; Novák and Tyson

2008; Tyson et al. 2003) and simple switches and clocks

have been synthesized in single cells more than 15 years

ago (Becskei and Serrano 2000; Gardner et al. 2000;

Elowitz and Leibler 2000). Nevertheless, we still lack a

comprehensive understanding of how these computational

modules have emerged, and which features and molecular

interactions are responsible for their efficient and robust

behaviour (Cardelli et al. 2017). Ideas from computing

might help us to take this last step, which might enable

biological switches and clocks to be influential in the

development of future computing technologies. The simi-

larity between the biological switch controlling mitotic

entry and the approximate majority algorithm of distributed

computing (Angluin et al. 2008; Cardelli and Csikász-

Nagy 2012) suggests that computing and molecular biology

could further influence each other in the future. With the

emergence of the fields of systems and synthetic biology,

there has been increased interaction between computer

science and biology, but there are a few steps needed

before we can realise a biology-inspired soft-matter com-

putational revolution. In this paper we review some of the

key advances we have seen as a result of the interplay

between computing and biology and speculate on the
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directions that a possible joint field could take in the near

future.

1.1 Computation

The basic components of computational devices, including

modern electronic circuits and earlier mechanical equiva-

lents, consist mainly of Boolean and arithmetic functional

units (Boolean control logic, integer and floating point

units, analog to digital converters, etc.), of registers to hold

intermediate results of iterative algorithms, and of coordi-

nation components that orchestrate the flow of information

across registers and functional units. Coordination is most

often achieved by clocks: at each tick data is frozen into

registers, and between ticks data flows between registers

through the functional units. This is the so called von

Neumann architecture that, despite dramatic technology

improvements and architectural refinements, has remained

largely unchanged since the first electronic computers.

Functional units compute Boolean and mathematical

functions by combinational logic (that is, without requiring

memory or timing coordination). We can easily find ana-

logues of these in biology, like the function computed by

the regulatory region of a single gene (Arnone and

Davidson 1997). Synthetic biology has demonstrated how

many such functions, typically Boolean gates, can be

engineered in vivo by a variety of genetic and protein-

based mechanisms (Siuti et al. 2013). More theoretically, it

has been shown how chemical reaction networks can

compute complex functions (Buisman et al. 2009).

Although much of this work has mimicked digital com-

ponents, there is a sentiment that functional units in biol-

ogy work mostly in the analog domain, and that synthetic

biology could benefit from this approach (Sauro and Kim

2013).

In this review we focus mainly on the other two classes

of components: memory and coordination. A switch is a

memory unit capable of storing a single bit: at the core

there is a bistable dynamical systems coupled with a

mechanism to force the system from one stable state to the

other. Switching behaviour is pervasive in biology: it is

achieved by a range of mechanisms, from individual

molecular components like phosphorylation sites and

riboswitches, to whole complex biochemical networks that

switch from one configuration to another, such as in the

cell cycle switch. Synthetic genetic switches have also

been demonstrated (Gardner et al. 2000).

The intricate feedback loops of biochemical networks

tend to produce oscillations in abundance, both stable and

transient, many of which are poorly understood. The most

prominent oscillators in biology, found also in the most

primitive organisms, are those involved in the cell cycle

and in circadian clocks, whose cyclic activities coordinate

much of cellular function. Oscillations can also be

observed in systems consisting of just 1 to 3 proteins, as in

the case of the KaiC circadian oscillator (Nakajima et al.

2005), although those proteins have a very sophisticated

structure. Theoretically, many chemical oscillators con-

sisting of 2 to 3 simple species have been studied

(Bayramov 2005).

Although similar basic components (switches, oscilla-

tors, and functional units) are found both in biology and in

computer engineering, it does not necessarily mean that

these systems compute ‘‘in the same way’’. In particular,

coordination is achieved in fundamentally different ways in

biological systems than in the von Neumann architecture.

In biology, oscillators coordinate events only at the

coarsest level of granularity, while fine-grained coordina-

tion is achieved by direct interaction between molecular

components. In the central processing unit of computers,

oscillators instead coordinate events at the finest grain, and

do so at great cost. As a result, low-power devices tend to

employ clock-free coordination strategies to save power.

At the level of computer networks, though, coordination is

achieved by message passing, because individual clocks

can get out of step and network latency may vary. Many

non-von Neumann models of computation have been

studied in the area of distributed computing: these models

resemble, and sometimes even technically coincide, with

biochemical models (Angluin et al. 2006; Chen et al.

2014).

The general architecture of computation in biochemical

systems is still a matter of investigation, and so is the

functioning of many subsystems that appear to process

information. For the moment we can focus on how nature

achieves the functionality of the basic components,

switches, oscillators and functional units, while using

material and constraints that are very different from those

that come from engineering.

1.2 How do natural systems compute?

The complex dynamics of natural systems drew research

interest a long time ago. The theory of dynamical systems

and chaos was born at the turn of the twentieth century,

with a focus on understanding the weather and the many-

body problem (Strogatz 2000). Pioneers of mathematical

modelling of biological systems came from the field of

chemical physics and used their experience learned from

non-equilibrium chemical systems to investigate biological

switches and clocks (Goldbeter 2017). Ideas on the

chemical basis of biological behaviour were also used by

the computer scientist Alan Turing to explain develop-

mental pattern formation (Turing 1952). Yet still comput-

ing had far less influence on our thinking about biological

systems than chemistry, physics or mathematics. Indeed,
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biological behaviour is controlled by (bio)chemical reac-

tions and the underlying reaction kinetics can be under-

stood by looking at the microscopic physical behaviour of

molecules, but to turn these into a comprehensive form,

mathematical expertise is required. Since the 1990s,

advances in computing have enabled us to solve highly

complex equations describing the physical interactions of

the chemical reactions driving biological behaviour, but it

was the appearance of systems biology (Kitano 2002a) that

led to the understanding that we need more computing to

truly understand biological systems (Kitano 2002b). Data-

rich biological experiments at the molecular level have

identified the ubiquity of switches and clocks (Goldbeter

2002) as core components of complex biological regulatory

networks.

1.2.1 Feedback loops

Already by the 1960’s it was known that feedback loops

are the key determinants of the dynamics of biological

systems (Griffith 1968a, b). Positive feedback loops are key

to the appearance of switching behaviour, while negative

feedback loops are needed for oscillations (Ferrell 2002;

Goldbeter 2002). The complex dynamics of biological

systems is determined by the combination of multiple of

such feedback loops (Tyson et al. 2003). Here we present

the main features of feedback loops that enables them to

drive key biological processes.

Feedback loops (FBLs) arise when at least two molec-

ular species regulate each other’s activity (Fig. 1). There

are two types of FBLs, negative or positive. Negative FBLs

(NFBLs) appear when the production or activation of a

species is either directly or indirectly repressed when this

same species is active (autoregulation) (Thomas and D’Ari

1990; Thomas et al. 1995). Negative feedback loops con-

tain an odd number of inhibitions. In Fig. 1, a system of

only two components is shown, where one of the molecular

species (X) exhibits inhibitory activity over the other (Y),

while this other molecule Y is activating the first molecule

X.

Positive FBLs (PFBLs) auto-enhance the production of

the species involved in the loop. There are two subtypes of

PFBL, pure positive or double-negative. Pure PFBLs

contain only interactions of activation, while double-neg-

ative PFBLs, or antagonistic interactions, contain an even

number of inhibitions (plus any number of activations).

(Fig. 1).

Feedback loops (FBLs) constitute a basic relationship

between molecular species to construct complex beha-

viours and consequently are abundant in protein regulatory

networks. FBLs can produce various dynamical beha-

viours, such as efficient switching and oscillations (Thomas

et al. 1995; Thomas 1981; Tyson et al. 2003; Tyson and

Novák 2010; Hernansaiz-Ballesteros et al. 2016; Cardelli

et al. 2017). Switch-like dynamics requires PFBLs, pro-

ducing two (or more) stable states of the system (usually

on/off states), when a given species is either fully active or

inactive. This feature of PFBLs is known to be key for

developmental and decision-making processes (Ferrell

2002). In contrast, oscillations require the presence of

NFBLs. While direct negative feedback can stabilize a

system, the introduction of a delay arising from regulation

via an intermediate, or simply through a slow accumula-

tion, can very easily lead to oscillations. If a system con-

tains at least three different molecular species and a strong

non-linearity, a damped or sustained oscillator may arise

(Griffith 1968b). Systems with only two molecular species

and without explicit time delays can also oscillate, but they

require the presence of a PFBL, creating a switch that

drives the oscillation. In contrast, the combination of pos-

itive feedbacks with the depletion of one of the species

creates systems that can oscillate without an explicit neg-

ative feedback loop. These so-called relaxation oscillators

produce characteristic fast switching in one direction, with

slow switching in the other direction, producing triangular-

like waveforms (Sel’Kov 1968). Finally, several natural

oscillations are known to integrate positive and negative

feedback loops, which is thought to enhance the oscillator

network robustness to intrinsic or extrinsic fluctuations

(Thomas 1981; Thomas et al. 1995; Novák and Tyson

2008; Ferrell et al. 2011).

1.2.2 Systems biology of switches and clocks

The importance of switches and clocks as basic modules of

biological networks was highlighted at the birth of systems

biology (Hartwell et al. 1999). Two contrasting approaches

of systems biology modelling are (1) a top-down approach,

where large-scale datasets are used to infer an underlying

molecular regulatory network and (2) a bottom-up

approach, where an abstract model of a regulatory system

is derived from existing experimental data, and the model

is subsequently tested against additional experimental data

(Bruggeman and Westerhoff 2007). The bottom-up

approach often involves models that combine feedback

loops to explain complex dynamical behaviour, which

Fig. 1 Examples of Feedback loops. Left, a negative feedback loop

composed of two molecules. Right, a pure positive feedback loop is

formed by only positive interactions, while a double-negative

feedback loop contains an even number of negative interactions
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often include a combination of switches and clocks (Tyson

et al. 2003). Indeed, some of the earliest examples of

cycles of model refinement and testing (Chen et al.

2000, 2004; Cross et al. 2002) came from the analysis of

the cell cycle regulatory network, which combines two

switches to control the major cell cycle transitions and an

oscillator that is responsible for the periodicity of the

process (Novák and Tyson 2008). Oscillators and switches

were also shown to be important in the context of spatio-

temporal control of cell signalling (Kholodenko 2006).

Furthermore, the effect of the coupling between positive

and negative feedback loops was also shown to be

important for the robust periodicity of oscillators (Tsai

et al. 2008). These and several other landmark papers have

led to legitimate claims of understanding the functioning of

these network motifs (Shoval and Alon 2010) and initial

thinking about what could be the algorithms underlying

cellular computation (Lim et al. 2013). In recent years,

major steps have been taken to understand biological

algorithms by synthesizing biological regulatory networks

de novo, which aim to compute specific functions.

1.3 Chemical reaction network design
and synthetic biology

The advent of ever more precise genetic engineering

requires an understanding of information processing in

reaction-diffusion networks and harnessing the emergence

of self-organising properties of such systems. Systems with

switch-like and oscillatory behaviours have been a focus of

synthetic biology for almost two decades. In a now classic

Nature edition from 2000, the genetic toggle switch and the

repressilator systems were described, which opened up a

new field of biological engineering (Gardner et al. 2000;

Elowitz and Leibler 2000). These systems not only serve as

models for the engineering of complex emergent beha-

viours, but also allow us to test our hypotheses on how

biological systems use feedback mechanisms within com-

plex networks to function and perform computations. In the

past few years, genetic switches and oscillators have also

been used in a number of applications.

1.3.1 Synthetic switching systems

The classic genetic toggle switch used two mutually

repressing transcription factors, which gives rise to bis-

tablity and hysteresis (Gardner et al. 2000; Litcofsky et al.

2012). Subsequently, genetic switches were also con-

structed using positive autoregulatory feedback loops

(Isaacs et al. 2003; Atkinson et al. 2003). More recently,

circuits combining mutual repression with positive

autoregulatory feedback have been built, including the

addition of a single positive feedback loop (Lou et al.

2010) and double positive autoregulatory loops, resulting

in a quadrastable switch (Wu et al. 2017). The genetic

toggle switch has also been coupled with quorum sensing

systems to create a population-based switch, which swit-

ched states dependent on the local cell density (Kobayashi

et al. 2004). In bacterial cells, the cellular context is of

increasing interest and this can affect genetic switch per-

formance in a number of ways including changes in sta-

bility at low molecule numbers (Ma et al. 2012), plus

dependence on host growth rate (Tan et al. 2009), sequence

orientation (Yeung et al. 2017) and copy number (Lee

et al. 2016). This suggests that natural systems have likely

evolved mechanisms that are robust to some of these fac-

tors. However, gene regulatory networks are only one way

to create switch-like behaviours. Alternatives include the

use of recombinases, which allow the DNA itself to flip

orientation (Friedland et al. 2009; Bonnet et al. 2012;

Courbet et al. 2015; Fernandez-Rodriguez et al. 2015), and

the use of transcriptional (RNA) systems (Kim et al. 2006).

Accompanying theoretical and computational work has

been equally diverse, with insights into possible network

topologies (Angeli et al. 2004; Otero-Muras et al. 2012),

stochasticity (Tian and Burrage 2006; Munsky and

Khammash 2010; Jaruszewicz and Lipniacki 2013; Leon

et al. 2016), robustness (Kim and Wang 2007; Barnes et al.

2011), time dependent transient behaviour (Verd et al.

2014), and emergent properties of populations of switches

linked by quorum sensing (Kuznetsov et al. 2004; Wang

et al. 2007; Nikolaev and Sontag 2016). Following the

pioneering work in bacteria, there has now been an

explosion of engineered switches for mammalian systems

(see Kis et al. 2015 for a comprehensive review), which

use components from diverse backgrounds (prokaryotic,

eukaryotic and synthetic), and target a variety of

applications.

1.3.2 Engineered biological oscillators

Synthetic genetic oscillators have undergone a number of

significant developments. The original repressilator was

constructed from three transcriptional repressor proteins

arranged in a negative feedback cycle (Elowitz and Leibler

2000). Another topology that combined positive and neg-

ative feedback was first studied theoretically (Barkai and

Leibler 2000) and then constructed in E. coli (Atkinson

et al. 2003). An extension of this negative feedback

oscillator, combining a further negative autoregulatory

feedback loop, showed increased tunability and robustness

(Hasty et al. 2002; Stricker et al. 2008). In a series of

landmark papers, this network topology was coupled with

quorum sensing to create populations of synchronised

oscillators at different scales (Danino et al. 2010; Mon-

dragón-Palomino et al. 2011; Prindle et al. 2012). This
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population-based circuit was eventually used for the

treatment of tumours in mice, the oscillatory dynamics

causing bacterial cells to lyse and release a chemothera-

peutic agent directly into metastatic sites (Din et al. 2016).

More recently, in an interesting development, the original

negative feedback topology of the repressilator was revis-

ited and re-engineered using detailed stochastic modelling

to vastly improve its robustness, so much so that the

oscillations remained synchronised without any need for

quorum system interactions (Potvin-Trottier et al. 2016).

Oscillators have also been implemented at the RNA level

(Kim and Winfree 2011), metabolic network level (Fung

et al. 2005), and in mammalian cells (Tigges et al.

2009, 2010). The theoretical properties of genetic oscilla-

tors have been studied extensively, including design prin-

ciples (Guantes and Poyatos 2006; Novák and Tyson

2008), robustness (Wagner 2005; Ghaemi et al. 2009; Tsai

et al. 2008; Woods et al. 2016; Otero-Muras and Banga

2016) and stochasticity (Vilar et al. 2002; Turcotte et al.

2008).

The engineering of biological systems in all organisms

faces similar implementation challenges. Perhaps the main

challenge is context dependence, which can occur at mul-

tiple levels (sequence, parts, evolutionary and environ-

mental) (Cardinale and Arkin 2012; Arkin 2013). These

include predictability of transcription and translation

(Mutalik et al. 2013a, b); development of orthogonal part

libraries (Wang et al. 2011; Nielsen et al. 2013; Chen et al.

2013b; Stanton et al. 2014); resource demand (burden, see

later discussion); and impedance matching or retroactivity

(balancing input sensitivity and output strengths) (Vecchio

et al. 2008; Jayanthi et al. 2013). Eukaryotic systems offer

additional challenges over prokaryotes due to their multi-

cellularity, more complex genomes and higher levels of

regulation (Ceroni and Ellis 2018). These challenges are

increasingly being met with an interdisciplinary approach

incorporating mathematical modelling, biochemistry,

‘omics’ approaches and ultimately a deeper understanding

of the biology.

1.3.3 Synthetic biology and computation

Within the field of synthetic biology, a large body of work

on computation has focussed on genetic Boolean gates

(Moon et al. 2012). In this arena the state-of-the-art in

transcription circuitry is the CELLO algorithm, which uses

a characterised library of repressor proteins to design

functional genetic implementations for any three-input

Boolean circuit (Nielsen et al. 2016). Recombinases (Siuti

et al. 2013) and the CRISPR/Cas system (Nielsen and

Voigt 2014) can also be used to construct Boolean gates,

and genetic Boolean circuits have also been combined with

the toggle switch to create sequential logic operations (Lou

et al. 2010), including a Pavlovian-like conditioning

genetic circuit (Zhang et al. 2014). Most recently, work has

shown that ribocomputing devices based on RNA opera-

tions can be used to create complex logic functions in

living cells (Green et al. 2017). Notable examples of the

translation of these approaches include cancer cell type

discrimination (Xie et al. 2011) and immunotherapy (Nis-

sim et al. 2017), both of which use Boolean logic com-

putations on intracellular mRNA signals within

mammalian cells.

The synthetic switches and oscillators described above

have been used in a small number of non-Boolean com-

puting applications inside living cells. For example, genetic

switches have been used in signal processing applications

including detecting small molecule signals in the mam-

malian gut (Kotula et al. 2014; Riglar et al. 2017) and

glucose sensing (Chen and Jiang 2017). In another land-

mark study, coordination of genetic oscillators was

achieved through coupling of post-translational processing

of proteins (Prindle et al. 2014). External input signals in

the form of chemical inducers and flow rate were encoded

into frequency modulated oscillations. By exploiting the

inherent queuing structure of protein degradation, both

oscillators become coupled and the corresponding input

signals combined into a single multispectral timeseries

encoding both signals (Prindle et al. 2014). The theoretical

study of multifunctionality in fixed network topologies has

become of great interest recently (Jiménez et al. 2017) and

work has shown that a genetic circuit comprising of both a

toggle switch and a repressilator, known as the AC–DC

circuit, has emergent properties such as coherent oscilla-

tions, excitability and spatial signal processing (Perez-

Carrasco et al. 2018). These examples show that biological

systems can be engineered to exploit feedback structures

for analog and digital signal processing and that complex

computations are possible at different scales. A computer

science viewpoint of how biological systems process

information and perform computation could help synthetic

biology construct more complex systems, further eluci-

dating how natural biological systems function.

Perhaps the most developed area of non-Boolean com-

puting within synthetic biology is molecular programming,

which uses nucleic acids (DNA, RNA) as the computa-

tional substrate. The use of DNA for computation was first

introduced by Adelman to solve an instance of the

Hamiltonian path problem (Adleman 1994). It worked by

mapping DNA oligomers to edges between nodes in a

small network and exploiting the huge parallelism of

� 1019 molecules to compute all possible paths using

repeated use of polymerase chain reaction (PCR). Finally,

oligomers of the correct length and containing the correct

start and end sequences were extracted, in principle
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providing solutions to this NP-complete problem. Fur-

thermore, the number of oligomers required is linear in the

size of the network. Since then, molecular programming

has progressed significantly and two modern approaches

will be discussed in detail in Sect. 3.

2 Dynamical correspondence
between biological and computing
networks

The primary mathematical feature of a switch is bistability,

which necessitates the existence of positive feedback loops.

The simplest (bimolecular) chemical reaction network that

realizes a robust bistable switch is the Approximate

Majority (AM) network, a system based on competing

autocatalytic feedback loops (Fig. 2a).

The name Approximate Majority comes from its origin

in distributed computing, where the algorithm is used by a

population of agents to reach consensus over one of two

beliefs (states) that each agent can independently adopt

(Angluin et al. 2008). At steady state, the whole population

reaches the belief state that was initially in majority, but

only approximately, since the algorithm is inherently

stochastic. Nevertheless, it has been shown that this algo-

rithm asymptotically optimally convergences to one of two

stable steady states in Oðlog nÞ time with high probability

(Angluin et al. 2008), where n is the population size

(number of agents). Moreover, the steady states are robust

to large perturbations, and they are reached quickly even

when starting from ambiguous configurations (Angluin

et al. 2008). A third (undecided) state is critical for the

functionality of the algorithm. Mapping this protocol to a

biochemical reaction network produces a system described

by 3 species (one per belief state) and 4 reactions (Fig. 2a).

Initialised with n total molecules, this reaction network

enjoys the same Oðlog nÞ convergence. While this basic

network exhibits only the bistability aspect of a switch,

external controls can be added to flip the system from one

state to the other.

In the biological literature, the exact interaction pattern

of AM can be found in epigenetic switches, where DNA

histones can be in one of three states: (M)ethylated,

U(nmodified), or (A)cetylated (Dodd et al. 2007). A con-

tiguous stretch of DNA consists of a population of histones

that should be uniformly methylated or acetylated. This is

achieved by the M and A states activating two proteins

each that catalyse transitions between M–U–A states

through the whole population. The known properties of

AM imply robust uniform settling of the whole histone

population into either M or A states, which is also the

interpretation suggested in Ref. Dodd et al. (2007).

Many other biological switching systems employ sys-

tems that can be related to the AM algorithm. Usually these

appear in a less direct way, with multiple species involved

in the feedback loops. Even though these more complicated

C D

BA

Fig. 2 Structural morphism and emulation of AM by GW. a, b Wiring

diagrams of Approximate Majority (AM) network and a system

containing four species embedded in multiple feedback loops (GW). a
The AM network shows the reactions involving the three forms of a

single molecular species X (empty, ball ended arrows mean catalysis

of a given reaction). b The GW network shows the interactions

between four species. Arrows indicate the interactions between them

(filled, ball-end means activation and dash-end means inhibition). c, d
Simulation traces of AM and GW show that they follow exactly the

same dynamics and that the individual species in GW (X, R, Y, S) can

be mapped to the different forms of AM. Active forms of X and R (x0

and r0) and inactive forms of Y and S (y2 and s2) collapse into x0 from

AM. Inactive forms of X and R (x2 and r2) and active forms of Y and

S (y0 and s0) collapse into x2 from AM. All intermediary forms (1)

collapse with the intermediary form of AM. The similarity between

the networks of panel A and B represent a structural morphism and

the similarity of their dynamics mean network emulation exists

between these two systems
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systems may look quite different, it is possible to apply a

model reduction technique that maps them down to the

basic AM network (Cardelli 2014). Similar reductions can

be shown for various models of the cell cycle switch

(Cardelli and Csikász-Nagy 2012), and can be summarized

as follows.

A trajectory is a time-course evolution of the concen-

tration of a single species. A complex network emulates a

simpler network if it can reproduce all the possible tra-

jectories of the simpler network, species by species, in the

following sense: for any initial conditions of the simple

network, there are initial conditions of the complex net-

work such that the set of trajectories of the complex net-

work is (with replications) exactly the same as the set of

trajectories of the simple network (Fig. 2c,d). In short,

emulation holds if the complex network can always mimic

the simple network. Moreover, this emulation condition on

trajectories, which is predicated on all possible initial

states, can be shown to hold just by examining the structure

of the networks (including rates and stoichiometry, but

without considering initial conditions). In such a fashion it

can be shown that various idealized cell cycle switches

emulate AM (Cardelli and Csikász-Nagy 2012; Cardelli

2014). For instance, the Greatwall network (GW) (Cardelli

and Csikász-Nagy 2012) summarizes the interactions of the

cell cycle regulators Cdk, Wee1, Cdc25 and PP2a, corre-

sponding to species X, S, R and Y respectively (Fig. 2b).

This network can emulate the behaviour of the AM net-

work (Fig. 2c,d).

2.1 From switch-like behaviours to oscillatory
dynamics

Switch-like dynamics are widely exploited to control bio-

logical systems requiring memory and decision making

(Tyson and Novák 2010). The AM system can efficiently

function as a bistable switch and its dynamics can be emu-

lated by a large class of complex biological networks (Car-

delli 2014). AM works with a single undecided state, but in a

real molecular system, the two modifications that lead to the

two active forms of AM might not affect the same site. This

led us to consider a Two Intermediates (TI) system with two

intermediates (OP and PO) between the autocatalytic forms

(OO and PP) (Fig. 3a). OO and PP can convert these species

between the various forms producing a specific pattern of

modification: OO !OP !PP !PO !OO. From a

dynamical systems point of view, the TI system produces

switch-like behaviour and emulates AM. In a biological

context, this system has been proposed to function as a

primitive sensor of the source of energy (Hernansaiz-

Ballesteros et al. 2018). When energy level is above a critical

threshold TI will be in the fully modified state PP, while as

the energy source decreases the system will switch to the

unmodified state OO.

The TI system maintains its toggle-switch behaviour

even if some of the reaction paths are blocked (Hernansaiz-

Ballesteros et al. 2018). The switching behaviour is lost

only when at least two reactions are removed, which then

results in oscillatory behaviour. The Spontaneous Oscilla-

tor (SO) network (Fig. 3b) is the simplest oscillatory sys-

tem that can be reached from TI by removal of reaction

paths (Hernansaiz-Ballesteros et al. 2018). The oscillations

of SO autonomously follow the path OO! OP! PP!
PO! OO (Fig. 3b). Curiously, the SO network is

remarkably similar to a well-known biological oscillator,

the network driving the circadian clock of cyanobacteria

(Fig. 3c). Here, the autocatalytic molecule KaiC, with the

help of KaiA and KaiB, drives 24 h oscillations of phos-

phorylation cycles (Nakajima et al. 2005). It has been

found that amongst the three components, KaiC is the most

conserved, and sometimes appears in organisms without its

two partners (Loza-Correa et al. 2010). Thus it was pro-

posed that KaiC-like molecules in primitive organisms

could have adopted a topology similar to either the TI or

the SO systems, thus they could be working there either as

switches or oscillators respectively (Hernansaiz-Ballesteros

et al. 2018).

There is a critical interest in finding minimal networks

that can serve crucial biological functions. AM was already

shown to serve as a minimal switch (Cardelli and Csikász-

Nagy 2012), and we can now see that SO could serve as a

minimal clock (Hernansaiz-Ballesteros et al. 2018). As the

two can be converted to one another through reaction

duplications and reaction removals, there is some sugges-

tion of an evolutionary link between these architectures.

This gives us a hope that these and other related systems

could be implemented in synthetic networks that can be

used for complex biological or computing tasks.

3 Molecular programming

Molecular Programming involves ‘‘the specification of

structures, circuits, and behaviours both within living and

non-living systems–systems in which computing and deci-

sion-making are carried out by chemical processes them-

selves’’ (molecular-programming.org). Nucleic acids are

currently the molecules of choice for molecular program-

ming, due to their high degree of programmability via

Watson-Crick complementarity and their ability to directly

interface with biological components, with potential

applications in sensing, diagnosis and treatment of disease.

A number of approaches have been proposed for imple-

menting computation in nucleic acids. Here we will sum-

marise two of the main ones—DNA Strand Displacement
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and PEN DNA Toolbox—and describe how they have been

used to implement switches and clocks.

3.1 DNA strand displacement

Pioneering theoretical work (Soloveichik et al. 2010)

showed how DNA could be used to implement a broad

range of computation, including any computation that can

be expressed as a chemical reaction network. The mecha-

nism proposed was that of toehold-mediated DNA strand

displacement (Zhang and Seelig 2011), whose systematic

use was pioneered by Yurke et al. (2000). During this

process, an invading single strand of DNA displaces an

incumbent strand hybridized to a template (Fig. 4a). The

process is mediated by a short exposed single-stranded

region of DNA, referred to as a toehold. Various types of

computation have been implemented experimentally using

this approach, including elementary Boolean logic (Seelig

et al. 2006), square root computation (Qian and Winfree

2011), neural network computation (Qian et al. 2011),

distributed consensus capable of switching (Chen et al.

2013a), and oscillations (Srinivas et al. 2017).

The general approach proposed by Soloveichik et al.

(2010) for implementing an arbitrary chemical reaction

network in DNA is based on a 4-domain scheme (Fig. 4).

This approach was subsequently used by Srinivas et al.

(2017) to implement an oscillator consisting solely of DNA

(Fig. 5).

One of the potential drawbacks of the 4-domain

scheme is that it requires synthetic DNA strands to be

annealed. These synthetic strands can contain synthesis

errors, which increase with strand length. A 2-domain

DNA Strand Displacement scheme was proposed (Cardelli

2013), which enabled gates to be manufactured using

plasmid DNA grown in cell culture. Since the DNA

replication machinery of cells is substantially more accu-

rate than existing DNA synthesis technology, particularly

for long sequences, a large number of copies of the same

double-stranded DNA sequence can be clonally replicated

in cell culture. The culture is sequenced to check that no

errors have been introduced and, since the population is

clonal, if the sample sequence is correct then all copies of

the sequence are also highly likely to be correct. The

2-domain scheme was used to implement the computa-

tional core of a switching network (Chen et al. 2013a)

(Fig. 6).

Overall, one of the main advantages of using DNA

strand displacement for the design and implementation of

molecular-scale computation is its high degree of pro-

grammability, since all interactions are precisely encoded

by the choice of DNA sequence. Moreover, system

dynamics can be accurately predicted from computational

models of their components (Chen et al. 2013a; Srinivas

et al. 2017). Another important advantage is that the entire

computation can be implemented solely in terms of DNA,

without requiring additional enzymes. This simplifies sys-

tem production, and also allows systems to be used in a

broad range of biological contexts, with limited disruption.

One of the main challenges is the need to replenish DNA

strands and complexes in cases where dynamic behaviour

needs to sustained for extended periods. To address this,

complexes and fuel strands could be replenished periodi-

cally, or a system of buffered gates (Lakin et al. 2012)

could be used. Another challenge is that unintended

C
A

B

Fig. 3 A simple switch turned into an oscillator. a The Two

Intermediates (TI) system, that is behaving like a switch and

emulating the behaviour of AM. b The Spontaneous Oscillator (SO)

system is derived from TI and functions as robust oscillator. Solid

arrows represent catalytic transitions with ball end arrows showing

the activator of transitions, grey empty arrows represent first order

conversions. c Representation of the KaiABC system of the

cyanobacteria circadian clock (Loza-Correa et al. 2010), where KaiC

hexamers are helped to convert themselves between forms that are

phosphorylated an unphosphorylated at two critical sites (labelled T

and S). KaiA (blue triangle) facilitates the phosphorylation reactions,

while KaiB (yellow rod) helps the dephosphorylation reactions.

(Color figure online)
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interactions between strands can lead to a decrease in

system performance, for instance due to blunt-end strand

displacement interactions that occur in the absence of a

toehold, also known as leaks. One strategy for mitigating

these leaks involves the use of toehold clamps (Qian and

Winfree 2011), which can be used effectively in a sys-

tematic way (Wang et al. 2017). Another approach for

reducing unwanted interference between DNA molecules

more generally is to localise the molecules to DNA origami

(Dalchau et al. 2015; Chatterjee et al. 2017), such that

strands which are meant to interact are placed close to each

other. This increases the local concentration of interacting

strands, allowing fast computation, while reducing inter-

ference. See Yordanov et al. (2014) for a more in-depth

discussion on the advantages and challenges of using DNA

strand displacement in the context of implementing

feedback controller systems, and a comparison with alter-

native nucleic acid implementation strategies.

3.2 The polymerase-exonuclease-nickase
dynamic network assembly (PEN-DNA)
toolbox

An alternative to DNA strand displacement for performing

molecular computation uses enzymes to manipulate DNA

signals. The PEN-DNA (Polymerase—Exonuclease—

Nickase Dynamic Network Assembly) toolbox is a set of

modules that can be composed to implement molecular

programs (Fig. 7a) and, as we shall describe in this section,

has successfully been used to implement switches and

oscillators.
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Fig. 4 A 4-domain scheme for implementing chemical reaction

networks in DNA, reproduced from Soloveichik et al. (2010). a An

elementary DNA strand displacement interaction, modelled by the

chemical reaction X þ G! Y þ H. Chemical species X denotes a

single DNA strand consisting of domains 1 and 2, where each domain

corresponds to a DNA sequence. The strand X is written \1 2[,

where the 3’ end of the strand is assumed to be on the right,

represented graphically by an arrowhead. The species G denotes a

complex consisting of strand\2 3[ hybridized to the strand\3* 2*

1*[, where the star (*) denotes Watson-Crick complementarity. The

reaction takes place in three steps: (1) The domain 1 binds to its

complement 1*. The reaction is reversible, since the domain 1 is

assumed to be short enough to spontaneously unbind. These short

domains are referred to as toeholds; (2) The domain 2 of strand\1 2[
displaces the domain 2 of strand \2 3[ by a random walk process,

referred to as branch migration; (3) The toehold domain 3 sponta-

neously unbinds from its complement 3*. b A 4-domain encoding of

the formal unimolecular reaction X1 ! X2 þ X3, with reaction index

i. The species of this formal reaction are represented as DNA strands

and highlighted by boxes, with X1 represented as \ ? 1 2 3[, X2 as

\10 4 5 6[and X3 as\11 7 8 9[. Black domains are assumed to be

unique to each reaction i, while green, red and blue domains are

associated to species X1, X2 and X3, respectively. The formal reaction

X1 ! X2 þ X3 is implemented by two DNA complexes, which are

assumed to be present in excess and are consumed over time. The first

complex G1 binds the species X1 and produces the intermediate Oi,

while the second complex Ti binds the intermediate Oi and produces

the two species X2 and X3. The additional intermediate step is needed

to ensure that the reactant species X1 does not contain any

overlapping domains with the product species X2 and X3. Note that

the sequence of toehold domain 1qi
can also be adjusted to be only

partially complementary to domain 1, in order to tune the reaction rate

qi. (Color figure online)
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An activation module enables a short single-stranded

DNA (ssDNA) signal a to stimulate production of another

ssDNA signal b. This is achieved by a longer template

strand a to b composed of two consecutive domains, one

complementary to a and the other complementary to b.

When a binds to the 3’ side of the atob template, Poly-

merase is recruited, and elongates the input strand over the

b domain, producing a full duplex. The sequences of a and

b are chosen to enable a Nickase enzyme to bind and

convert the duplex into a nicked double-stranded molecule.

This separates the upper domains, such that their affinity

for the template is reduced and they can more easily

unbind, leading to the release of the pre-existing a and de

novo synthesized b ssDNA signals. As such, a catalyses

Fig. 5 Implementation of an oscillator using a 4-domain DNA strand

displacement scheme, reproduced from Srinivas et al. (2017). a The

desired oscillatory dynamics are implemented by a molecular

program, which is specified as a chemical reaction network. The

network consists of three species (A, B, C) and three autocatalytic

reactions, in which B converts A to itself, C converts B to itself, and

A converts C to itself. This corresponds to the so-called rock-paper-

scissors oscillator (Lachmann and Sella 1995). b The chemical

reaction network is then translated to a 4-domain DNA architecture,

similar to the one described in Fig. 4. Each molecular species is

implemented as single DNA strand, and each reaction is implemented

as a pair of DNA complexes together with an additional fuel strand.

For example, the reaction Aþ C ! 2A is implemented as a complex

that consumes the A and C strands to produce an intermediate strand,

and a complex that consumes the intermediate to produce two A

strands, with the help of a fuel strand. The complexes and fuel strands

are assumed to be present in excess and are consumed over time in a

closed system, resulting in progressively slower oscillations

Fig. 6 Implementation of a switch using a 2-domain DNA strand

displacement encoding, reproduced from Chen et al. (2013a). The

system takes as input two populations of signals, encoded as DNA

strands, and uses a distributed consensus network to determine which

population is in the majority. The output of the system is a

homogeneous population of strands, in which all of the minority

strands have been converted to the majority. As with the oscillator

described in Fig. 5, the behaviour of the systems is specified as a

chemical reaction network consisting of three reactions, in which X

and Y cancel each other out to produce two intermediates B, species

X converts B to itself, and species Y converts B to itself. This is

equivalent to the Approximate Majority network (Angluin et al.

2008) described in Fig. 2
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the production of b, analogous to the reaction a! aþ b.

A deactivation module implements the reaction a! a0,
where a0 is notionally inactive. This is achieved by a

pseudo-template pTa that extends a with a short oligonu-

cleotide tail, preventing a from participating in activation

reactions. Finally, a 5’-3’ Exonuclease destroys all ssDNA

signals, representing a non-specific degradation module.

3.2.1 Switches as memory devices

A bistable switch was one of the first circuits constructed

using the PEN-DNA toolbox (Padirac et al. 2012)

(Fig. 7b). The circuit design combined self-activation with

mutual inhibition, resembling the MI network described

above. The inner mutual inhibition module was achieved

using four template strands: two templates implemented

self-activation for a (a to a) and b (b to b), while a further

two templates implemented inhibition with the production

Fig. 7 The PEN-DNA toolbox. a Summary of the PEN-DNA toolbox

modules (reproduced from Meijer et al. 2017), with Polymerase (Pol),

Exonuclease (Exo) and Nickase (Nick) enzymes. b The switchable

memory circuit from Padirac et al. (2012). In the network diagram,

blue symbols represent components associated with the high a-low b

state, red symbols represent the low a-high b state, and green/orange

symbols are the external inputs. Measurements correspond to treating

with 2.5 nM or 5 nM of dtob, as indicated. All graphics are

reproduced from Padirac et al. (2012). c The negative feedback loop

oscillator from Montagne et al. (2011). (Color figure online)
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of inactive signals ia and ib, which block a and b templates

respectively. An additional two templates were then used to

mediate inputs c and d that could switch the device

between the a and b states. The authors demonstrated that a

high concentration of external input could switch the

device in approximately 200 minutes, but with lower

concentrations leading only to a transient excursion and

then return to the pre-existing stable state. While the

demonstration of the robustness of the switch is impressive,

such a long switching time could prohibit its usage in some

applications/ Nevertheless, by this circuit being both

bistable and switchable, it can be used for long term

memory storage. A push-push memory device was also

constructed, which enabled switching back and forth in

response to the same input signal.

Switches are fundamental building blocks for many

computational devices, but their utilisation requires sensing

of inputs and actuation. Recently, it was demonstrated how

the PEN-DNA memory switch of Padirac et al. (2012) can

be connected to downstream enzymatic actuators, enabling

the connection of DNA-based memory devices to triggered

downstream signalling (Meijer et al. 2017). To achieve

this, a translator module was developed that dynamically

perceives the short single-stranded DNA molecules of the

bistable switchable memory device described above, then

produces longer DNA strands that can be used to control

the activation of two enzymes, NanoLuc and TEM1 b-

lactamase. Importantly, the translator was designed to

minimize retroactivity back to the memory switch, which

was demonstrated with a detailed experimental and theo-

retical characterization. Finally, the activation/inactivation

of the enzymes relies on interactions with conjugated

oligonucleotides, which are modulated by the output of the

translator module. This appears to be the first time memory

devices and actuators have been connected in a synthetic

molecular circuit, and is an important step towards realis-

ing more general molecular computers.

3.2.2 Limit cycle oscillators as clocks

The first attempt to produce an oscillator using the PEN

toolbox approach was based on recapitulating a network

topology that is known to robustly produce oscillatory

behaviours (Montagne et al. 2011). Subsequently, another

network architecture based on a predator-prey interaction

was developed (Fujii and Rondelez 2013). Using both

strategies, the Rondelez group were able to sustain oscil-

lations for more than 10 cycles, with only a small ampli-

tude loss. By taking advantage of molecular diffusion, and

visualizing the solution between two glass slides, a follow-

up work illustrated how these DNA-based oscillators can

also produce travelling wave phenomena (Padirac et al.

2013).

Compared to oscillators constructed from purely DNA

systems, the PEN-DNA systems exhibit temporal dynamics

that can be sustained for substantially longer time periods.

A feature of PEN-DNA that is likely to contribute to this is

the ability to synthesize new copies of the signal strands.

This is not possible with a purely strand displacement

system, which produce new signal strands by releasing

them from previously constructed gate species, supplied as

fuel. Accordingly, the gate species are consumed over time

and oscillator amplitudes drop. The PEN-DNA systems

also exhibit changes in dynamics over time as the supply of

nucleotides and other reagents is depleted, though this

occurs on a longer time scale relative to the system

dynamics.

4 Future of biological computing

4.1 Molecular programming in cells

Despite the limitations discussed above, there are consid-

erable advantages to using DNA circuits to implement

computation in cells. DNA offers a natural interface to the

cellular machinery and is inherently biocompatible. After

several years of exploring the computational potential of

nucleic acid circuits in vitro, there are now efforts to

deliver DNA circuits into live cells. In Groves et al. (2015),

a variety of methods were compared for delivering nucleic

acid circuits to mammalian (CHO and HeLa) cells, and it

was shown that multi-input computation in live cells could

be detected using flow cytometry. In the same study,

chemical modifications to DNA and RNA strands were

shown to improve binding kinetics, most likely a result of

reduced nuclease activity against the modified strands. This

has stimulated more detailed characterization studies of

nuclease activity against nucleic acid circuits (Fern and

Schulman 2017). Another fruitful strategy for delivering

DNA circuits to live cells has been the use of DNA ori-

gami, which provides both a localizing and protective

effect on circuit components, leading to faster circuit

operation (Dalchau et al. 2015; Chatterjee et al. 2017), but

also successful operation in a live animal (Amir et al.

2014).

Introducing molecular circuits based on the PEN-DNA

toolbox into cells is made challenging by the need to

express the PEN enzymes in the target cells. Enzymes

impose several design constraints on the selection of DNA

sequences. Nicking enzymes have specific recognition

sites, which imposes a limit on the diversity of signal

strands that can be used in a PEN-DNA circuit. In contrast,

polymerase and exonuclease are non-specific, meaning that

the activation and degradation reaction rates are difficult to

control. While differential activation rates could be
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achieved by controlling activation template concentrations,

dynamic behaviours that require differential degradation

would be harder to engineer.

Nucleic acid circuits have the added benefit of requiring

a reduced regulatory approval process compared with

genetically modified organisms, for applications such as

disease diagnosis and treatment. There have already been

several attempts to use nucleic acids circuits, combined

with transcriptional machinery, for biosensing and diag-

nosis (Pardee et al. 2016). Non-transcriptional nucleic acid

circuits are in principle easier to program than transcrip-

tional networks based on promoter regulation by proteins.

In part, this is due to transcriptional control requiring the

pairing of a protein surface with a DNA binding motif, an

interaction that is challenging to engineer synthetically.

However, new approaches based on CRISPR/dCas9 could

lead to a more targeted way of engineering networks with

precise topologies. Finally, nucleic acid circuits are a

convenient test framework for programmed genetic cir-

cuits. They force the engineer to consider energy/substrate

economy and the physical limitations of molecular binding,

which, for example, is analogous to ribosomal usage and

transcriptional and translational efficiency of synthetic

gene circuits. Much of what we have learned in the design,

characterization and analysis of nucleic acid circuits can be

applied to the engineering of computational circuits based

on other biomolecular frameworks.

4.2 From molecular networks to algorithms

As we have seen above, algorithms that mimic the beha-

viour of biological switches and clocks can be imple-

mented using DNA circuits, and the same dynamics can

also be achieved using synthetic gene regulatory networks.

It remains to be seen how more complex gene regulatory

networks could implement more advanced algorithms,

enabled by advanced genome editing techniques (Cong

et al. 2013). More complex engineered networks of

switches and clocks could also be combined with electronic

circuits (Cao et al. 2017) to serve as biosensors. These

applications could have a major influence on disease

detection and treatment. However, to reach this stage

requires a better understanding and control of elementary

computing units. Thus, algorithmic thinking might be

leveraged to detect and ultimately treat complex disease

states, by combining switches and clocks with the existing

logic circuit toolbox.

Historically, the analysis of biological mechanisms and

collective behaviour from an algorithmic perspective led to

simplified models, which aided understanding of informa-

tion processing in natural systems. This laid the ground-

work for future breakthroughs across disciplines

(Marblestone et al. 2016; Navlakha and Bar-Joseph 2011;

Whitley and Sutton 2012; Yang 2014). Such advances will

continue, driven by the desire for scalability and robustness

as the complexity of solid state technology approaches that

of biological systems.

As precision in designing chemical systems increases,

we look towards chemical computational units with which

we may construct complex behaviours systematically. We

have seen how computational DNA circuits and related

technologies can be used as flexible molecular mechanisms

to engineer switches, oscillators, and other computational

components in vitro, with efforts being made also in vivo.

Moreover, such computational units can be coupled with

molecular sensors, actuators, and scaffolding to provide

complete nanoscale devices. Many such devices and

components can be individually designed and engineered

using the DNA, RNA, and enzyme tricks of the biochem-

ical trade.

4.3 From single-cells to computational
communities

Building on the fascinating advances in our ability to

program cell-autonomous behaviours, there are now sev-

eral examples of establishing behaviours that rely on

multicellularity. Switches within individual cells can be

linked via inter-cellular communication (see Hennig et al.

2015 for a thorough review), including natural quorum

sensing molecules (Camilli and Bassler 2006) and artificial

DNA messengers (Ortiz and Endy 2012; Goñi-Moreno

et al. 2013). As such, it is possible to achieve behaviours of

distributed computing algorithms with cells. Based on

temporal logic, it was shown how cell populations could be

used for timing and recording chemical events (Hsiao et al.

2016).

In additional to temporal control, intercellular commu-

nication also enables spatial control, and therefore pro-

grammed pattern formation. Already, this has enabled

circuits that can detect spatial boundaries between an

environmental signal (light) (Tabor et al. 2009) and

establish stripe patterns in expanding colonies (Liu et al.

2011). More exploratory work with communicating bac-

terial populations has begun to shed light on how devel-

opmental patterns can be scale invariant (Cao et al. 2016),

but also suggest a new platform for testing ecological

theory, via synthetic ecosystems (Song et al. 2009). Fur-

thermore, techniques such as live cell lithography can

create regular structures of communicating microbes at

resolutions of 5 lm (Mirsaidov et al. 2008). There is also

work in controlling spatial distributions of DNA molecules

directly (Dalchau et al. 2014; calise and Schulman 2014),

which could be used to pre-pattern cellular systems.

Put together, there is now real promise for designing cell

colonies that control their own temporal dynamics and
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spatial positioning. This could be highly relevant to bio-

logics production in bioreactors, where spatial hetero-

geneity in resources and cell density could lead to

inefficiencies. The advantages of automatic control can be

readily seen in more traditional control engineering appli-

cations, and consequently, there is now rising interest of

implementing control algorithms in biological circuits (Del

Vecchio et al. 2016). Earlier strategies were based on

transcriptional negative autoregulation (Becskei and Ser-

rano 2000; Rosenfeld et al. 2002), but more recently, a

more advanced integral control via negative feedback has

been demonstrated in metabolic circuits (Briat and

Khammash 2018), but also using optogenetics via in silico

controllers (Milias-Argeitis et al. 2016; Lugagne et al.

2017). Automatic control will bring robust operation and

self-adaptation to biological circuits, which will help to

make biotechnology more efficient and ultimately more

competitive in the marketplace (Del Vecchio et al. 2016).

Despite the promise of synthetic biology, significant

challenges remain for regulating biological behaviours

with the insertion of designed networks of transcriptional

components. One challenge relates to timescale: tran-

scriptional control is slow, though is the dominant mode of

regulation in synthetic biology applications to date. Control

algorithms are sometimes inefficient in the face of delays,

and so their success might depend on establishing faster

modes of biological regulation. Here, molecular program-

ming might provide a solution, as DNA-based circuits can

be localized, speeding up their operation (Chatterjee et al.

2017). Another challenge of using transcriptional regula-

tion is that each additional component introduces a burden

on the host cell, which can lead to poor growth of the

colony, thus altering the performance of existing compo-

nents and/or reduce yields (Scott et al. 2010; Borkowski

et al. 2016; Wu et al. 2016). For example, inserting a

component that leads to high levels of protein translation

will impose a burden on the ribosome pool (Scott et al.

2010; Shachrai et al. 2010), high levels of transcription

will impose a burden on RNA polymerase (Gyorgy et al.

2015), and high levels of protein degradation will impose a

burden on proteases (Cookson et al. 2011). While some of

these can be mitigated with quantification of the burden

and careful design (Nielsen et al. 2016), establishing cel-

lular control with components that do not consume/occupy

shared cellular resources could be a major advantage.

However, it remains unclear as to whether DNA circuits

can operate reliably enough inside cells to rival existing

approaches to cellular control.

The extent to which spatiotemporal control can improve

biotechnology applications is relatively unexplored.

Therefore, more theoretical work is needed to establish the

performance that can be achieved by algorithms based on

chemistry and cellular communication, and therefore to

understand the capability of synthetic multicellular

platforms.

4.4 Learning from biological computing

As we increasingly rely on computing to process large

datasets for everyday tasks at home and at work, power

consumption will become a future limiting factor (Council

2011; Kamil et al. 2008). In fact the effects of thermody-

namics—that is removing heat efficiently from semicon-

ductor devices—has already driven the shift to multicore

chips and parallel computing, which can improve on the

performance scaling of single processors, but will funda-

mentally change how we develop programs (Council

2011). Biological systems perform computations at much

lower levels of power consumption: estimates report 4

orders of magnitude for molecular machines (Nicolau et al.

2016) and up to 12 orders of magnitude for DNA com-

puting (Adleman 1994). In addition, these computations

are carried out in a robust manner, embedded within fluc-

tuating environments, and often utilising components that

are unreliable and noisy (Sarpeshkar 2010). This incredible

performance is achieved through multi-scale hybrid analog

and digital information processing. Biological computers

have the additional advantage that they can interface

directly with living systems and therefore open up new

applications in biosensing with industrial and clinical rel-

evance. For example, signal processing in the ear has

already inspired electronics for low power cochlear

implants (Mandal et al. 2009) and pattern recognition by

neurons led to a novel analog-to-digital converter (Yang

and Sarpeshkar 2006). These properties, combined with the

high information storage density of DNA (Church et al.

2012; Goldman et al. 2013; Erlich and Zielinski 2017),

provide exciting future directions for further research.

In this review we have highlighted how complex

biomolecular networks make use of switches and oscilla-

tors to perform computation. The continued understanding

of how this information processing is achieved at such high

levels of robustness and low power requirements will

require the concerted efforts of systems and synthetic

biology in addition to leveraging tools from engineering

and computer science. While it is unlikely that biological

systems will ever replace silicon as our dominant com-

puting platform, learning how they compute could have a

significant impact on future computing architectures.
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