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Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand
basicmolecular processes, produce novel drugs, improve health, and so on. Standardized conditions
ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly
changing environment. Here we combine the power of computational simulations and laboratory
experiments to investigate the impact of non-standard environmental factors on colony growth. We
present the developement and parameterization of a quantitative agent-basedmodel for yeast colony
growth to reproduce measurements on colony size and cell number in a colony at non-standard
environmental conditions. Specifically, we establish experimental conditions that mimic the effects of
humidity changes and nutrient gradients. Our results show how colony growth is affected bymoisture
changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony
spread, not initial cell number have higher impact on the final size and cell number of colonies.
Parameters of the model were identified by fitting these experiments and the fitted model gives
guidance to establish conditions which enable unlimited growth of yeast colonies.

The budding yeast Saccharomyces cerevisiae is one of the most commonly
used microorganisms in the food and biotechnology industry and also
serves as a model organism to understand basic biological processes.
S. cerevisiae has contributed to the understanding of some of the most
fundamental molecular processes, from cell cycle regulation to autophagy
and so on1–3. Growing yeast or bacterial colonies on semi-solid surfaces is an
everyday task inmost laboratories. The first detailed investigation of colony
growth dynamics dates back to the 1920’s, when the linear growthmodel of
colony diameter was established4. In the 1960s Pirt extended this model by
an initial 12 h exponential growth period. Later Gray and Kirwan5 showed
that diffusion can limit colony growth and the diameter of the dish can
influence themaximal size of a colony. They have also realized that colonies
grown in proximity to each other can affect their growth kinetics. In the 90’s
colony growth was characterized as a biphasic process by Meunier and
Choder6, demonstrating that an initial rapid growth phase is followed by a
sharp transition to a slower growth phase due to the cells in the center going
into a stationary phase and growth being driven dominantly by peripheral
cells. Further aging of the colony leads to a scarcity of nutrients and oxygen
inside, resulting in differentiation within the colony7. These days, growing
yeast colonies and using colony size as an indicator of fitness is a daily
routine in many research laboratories8,9. Still, the underlying cellular pro-
cesseswhich affect colony growth are far less understood.Most of the above-
mentioned quantitative studies focus on the measurements of colony dia-
meters and only a little is known about the processeswhich happenbetween
the cells inside yeast colonies10–14 Ammonia was identified as a

communication factor between yeast colonies15,16, and emergence of meta-
bolic and transcriptional heterogeneity inside yeast colonies were also
identified17,18. More is known about the colony growth regulation of bac-
terial colonies. Metabolic and electrical signaling inside and between colo-
nies has been identified11–14, but similar depth studies have not been
performed on yeast colonies. We know about interactions between and
inside colonies, and we know that yeasts evolved in a constantly changing
environment, while in laboratory experiments, we minimize the variations
in conditions (media, temperature, humidity, seeding conditions, light) for
standardization and reproducibility.With these restrictions we cannot fully
reveal how yeast colonies are formed, grow and interact. Mathematical
models have helped the interpretation of many of the above listed obser-
vations on microbial colony growth13,19 and others also focused on inte-
grating knowledge to capture colony growth dynamics20–22 and colony
structure emergence23–26, even incorporating physical forces27–29. Some
models consider individual microbes as agents, which interact with their
environment and neighboring cells30. Such agent-based (or individual-
based) modeling techniques were also used to understand how bacterial
colonies grow21,31 and spatial patterns in their form might emerge32 or to
investigate microbial communities33,34. While there is a high level of simi-
larity between the structure of bacterial and yeast colonies, there are some
considerable differences inhow these are formed.Motility of bacterial cells is
missing in yeasts, and their cell division characteristics and periods are also
dissimilar. These differences need to be taken into consideration before
applying the above bacterial models for yeast colony formation.
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Despite of these efforts, our current knowledge still lacks quantitative
details on how growth of colonies depend on diffusibility of media in the
agar and how initial layouts of cells can influence colony growth. Here we
combine quantitative colony measurements in various conditions with
agent-based modeling to reveal the dynamical features and limiting factors
of colony growth. Specifically, we parameterize an agent-based model to fit
measurements of yeast colony growth dynamics at various initial densities,
layouts and agar media conditions. Then we use the model to predict how
diffusion and proximity of other colonies can limit colony growth. The
model helped us to come up with conditions to grow unconditionally large
colonies and show that initial spread of cells have a greater influence of
colony size than initial cell number has.

Results
An agent-based model of yeast colony growth
To be able to capture the dynamics and limiting factors of yeast colony
growthwe turned to agent-basedmodeling33,35, where each cell is considered
as an agent interacting with its environment and following a basic growth
cycle. The model considers yeast cell groups as agents with their main goals
to grow and divide. The metabolism of the cells is simplified to an energetic
need provided by one nutrient present in the environment.

Each cellular agent has a life cycle evaluated in every simulation step
(Fig. 1a). This life cycle has the following stages: The agent takes up a
predefined amount of nutrients from the layer grid cell it is situated on and
adds it to its energy level. This energy level is used for covering resources
needed for metabolism and growth. The metabolic energy is subtracted
from the cell in each simulation step. If the agent’s energy level falls below a
certain threshold, the agent dies, becomes inactive, and gets removed from
the simulation. Its remaining energy returns to the layer as a nutrient. If it
reaches a predefined energy level (division threshold) the cell divides into
two cells, the daughter cell gets the initial cellular energy level (and starts its
own life cycle), and the rest remains in themother cell. Cell divisionhappens

in two dimensions: the daughter cell gets a random position at a certain
distance from the mother cell. The daughter cell has the same properties as
themother cell except for its position and energy level. This asymmetric cell
division reflects the typical behavior of budding yeast36. If the energy level of
the agent is between a given threshold (G0 threshold) and the death
threshold it enters a passive, solitary, G0 state from the previous, active state.
An agent in this G0 state37,38 cannot divide and consumes less nutrient/
energy than in its active, dividing state. It is beneficial if the agent is in a
nutrient-deficient environment because it can survive longer with baseline
metabolism (and can reactivate itself if the nutrient level increases
again) (Fig. 1a).

The agar plate is simulated as a two-layer square grid plane (of nutri-
ents) in the model, on which the agents (yeast cells) are positioned. The
upper layer feeds the cells in the growing colony and the lower layer feeds the
upper one and ensures that nutrients can diffuse even to inner regions of the
colonies where many cells are actively growing. This setup serves as a
computationally efficient rough approximation for the three-dimensional
nature of themedia. The agents are immobile and point-like represented by
their coordinates on the plate. It indicates that they do not have an explicit
area. Multiple agents can be on a grid cell, but the agents interact (take up
nutrients) directly only with their grid cell. Agent density develops
according to local nutrient supply and availability as an emergent property.
The nutrient concentration is tracked in each grid cell of both layers and this
concentration changes in every simulation step by nutrient uptake (via the
cellular agents), by diffusion inside the layers, and by nutrient transport
between the layers. In this way, neighboring cells, which are present in a
single or nearby grid, are competing for the locally present nutrients which
can be depleted, but slowly recharged from the bottom layer. Parameters of
the plate (the environment), initial cell layout, and yeast strains can be easily
configured through an input parameter file (See Code availability). This
enables placing multiple colonies on a simulation plate (currently up to 24
but can be upscaled for any layout). A detailed description of the model

Fig. 1 | An agent-basedmodel of yeast colony growth. aCore life cycle algorithm of
the agent-basedmodel for each simulated yeast cell. bColonies grown from a single-
cell and from 1 and 3 μl droplets at the age of 8 days and their cross-sectional

intensity profiles. Scale bar represents 1 cm. (Representative images from n = 4).
c Illustrative simulations of the above experiments and their cross-sectional intensity
profiles. Conversion: 55.6 simulated area units per mm2.
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parameters, their values and the primary outputs can be found in the
Methods and Supplementary Table 2 and 3.

The qualitative capabilities of themodel were tested and validatedwith
experiments in multiple aspects (Colony shape, size, and behavior of mul-
tiple colonies next to each other). First, we tested themodel on fitting colony
sizes and shapes formed after various inoculations. Single-cell colonies
(simulated colonies initializedwith one agent) and colonies inoculated from
adroplet showdistinct colony shapes.When considering local cell density as
a third dimension, the simulations represent well the conical shape of a
single cell colony39 and the volcano-like shapes experienced when inocu-
lating with liquid droplets40. The difference in the crater size depending on
the inoculation droplet size is also apparent (Fig. 1b). Yeasts, especially wild
isolate strains are capable of forming biofilms and more complex
3-dimensional structures that depend on local/physical forces25,41 or cell
differentiation. Currently, these forces are not incorporated into the model.

Growth dynamics parametrization
To determine the agent/strain-specific and environment-specific para-
meters of the model, first, we investigated the limitation of nutrients in a
plate when multiple colonies are inoculated on it. Multiple colonies (1, 2, 3,
4, and 6) were inoculated on a single Petri dish as shown in Fig. 2a. Colonies
were grown for 20 days for both qualitative and quantitative analysis.
Growth curves (Fig. 2c) show that the timeof deceleration of the growth rate
and entering in the stationary phase depends inversely on the number of
colonies. One can observe that colony shapes change from circular to a less
and less circular shape due to the proximity of neighboring colonies and the
edge of the plate. This feature was also present in our simulations (Fig. 2b,
Supplementary Fig. 1). Besides fitting the area and considering the shape of
the colony, this experimental setup provided the ground for parametrizing
the model to represent the distance in which neighboring colonies start to
inhibit each other by competing for nutrients. The area over time was used
to determine the following parameters of the model: cell division distances,
nutrient diffusion rates, initial nutrient levels, and initial colony sizes.

Cell division distanceparameter defines distance between the daughter
cell and its mother cell after division. The size of the colony and the density
of the agents inside the simulated colonies can be controlled by modifying
this parameter. Its value is expressed in grid cells, so it is dependent on the
spatial resolution of the model and the size of the simulated plate.

The initial colony size parameter defines the radius of the circular
region populated with cells belonging to the same strain (having the same
properties) at the beginning of the simulation. It reflects the initial drop size
at the surface of the agar plate and has considerable impact on the final

colony size. Cell concentration, volume of the initial drop, the height from
which the drop falls onto the agar and the viscosity of the agar surface all
influence the drop radius in a complexway, so it wasmore efficient tofit this
parameter instead of calculating it. Its value is also expressed in grid cells, so
it is dependent on the spatial resolution of the model and the size of
simulated plate. See Supplementary Table 3 for the parameter values.

Initial nutrient level parameters of the two nutrient layers define the
nutrient content of each grid cell in the upper and in the lower layer at the
beginning of the simulation. It is defined in abstract units as the other
nutrient and energy connected terms in the model. Nutrient diffusion rates
set the speed of material flow within the layers. High rates make nutrient
supply fast for the cells while low rates enable the emergence of nutrient
depleted zones beneath and around the communities easier and earlier.
These two sets of parameters influence the speed and duration of the active
growth phase of the colony development as well as the number of agents.
They are connected to the nutrient uptake and other cell metabolism
parameters by providing external input for the cells. Their values were
different indifferent experiments (SupplementaryTable 3) andalthough the
tendencies were known (more or less available nutrient, more or less dense
agar media) their exact values were not determined instead of fitted for the
colony growth data.

Descriptions anddefault levels of themodelparameters canbe found in
Supplementary Table 2. A summary of the parameter values that vary
between the experiments is shown in Supplementary Table 3.

Studying initial conditions of inoculation
During early runs of the model, initial colony seeding arose as a critical
condition. To test the importance of initial seeding conditions for the colony
size, we have constructed an experiment in a standard rectangular plate
format (OmniTray) to investigate two initial inoculation parameters: dro-
plet size and cell number. Inoculation droplet size was varied by changing
the volume of the drops while cell numbers in these drops were fixed by
changing the concentrations accordingly. The other variable, the initial cell
count, was varied by changing the concentration, while keeping the drop
sizes. For a combined design to test these two parameters, a 4 × 6 grid was
applied with increasing initial droplet sizes and inoculating cell counts as
shown in Fig. 3a. Proportional differences in the colony size on the second
day (blue circles in Fig. 3a) were present due to the spreading of the droplets
according to their volume (0.5 to 5 μl). 5 μl colonies on the second day were
on average 2.8x larger than the colonies starting from 0.5 μl initial droplet
size, while this difference was reduced to 1.4 by the 12th day of the
experiment. The aforementioned colony layout was simulated as well with

Fig. 2 | Impact of adjacent colonies on each other’s growth kinetics. a Increasing
number of colonies were inoculated on standard Petri dishes (1,2,3,4, and 6 colonies
per plate) (sample sizes in order: 4,6,9,12,12). Pictures shown were taken 13 days
after inoculation, green circles indicate area after 1 day and magenta circles indicate
area after 20 days (Scale bar represents 1 cm). b Simulation of the above experiment.

Green indicates the colony area after 1 day, white after 13 days, and magenta after
20 days. c Kinetics of colony area by colony number on the plate is shown.
Experimental data is shown with markers and simulations with a solid line. Simu-
lation results are scaled 55.6 pixels to 1 mm2.
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our computational model (Fig. 3b). To mimic the conditions of regular
high-throughput OmniTray experiments, an agar layer was defined with
high initial nutrient level, which is constantly consumed by cells at all spots.
Diffusion values, cell division distances and initial nutrient amounts were
fitted to match the simulated colony sizes to experimental data. See Sup-
plementary Table 3 for more details on parameters.

Comparing colony sizes over a 2-week period (Fig. 3c) as well as at the
final time-point (Supplementary Fig. 3) revealed that initial inoculation
volume (rows) has a larger impact on colony size than cell count (columns).
The far-right column with 8000 initial cells shows a prolonged growing
phase, hence a larger size compared to others. This is due to the slightly
asymmetrical arrangement of initial drops, enabling the right column to
reach more nutrient resources. Simulations of exact copies of plate
arrangements (Fig. 3b) and other arrangements of samples (Supplementary
Fig. 2 and 3) confirm that this was only an edge effect.

Understanding the effects of agar wetness on colony size and
structure
Moisture isoneof theenvironmental factors that constantly changes innature.
A lower agar density can be considered as amoist environment. It was shown
that lower agar density increases colony size42,43and cell-cell and cell-agar
surface tension was proposed to cause these differences31,44. To test the effects
of agar wetness changes on colony growth in our model we set up an
experiment with changing the environment of the agar disc upon which the
colonies were growing. An agar disc was surrounded with liquid media to
imitate a moist environment (wet condition). In this environment, colonies
grow twice (1.95) as large in area as in a dense environment, with similar
nutrient content (Fig. 4a wet condition). Besides their size, there is a notable
difference in the colony structures too. The colonies in this wet condition
formed a flatter, more mucous structure with edges flattening out, compared
to the ‘dry’condition (grownonregular2%YPDagar) (SupplementaryFig. 4).

The experiment was constructed to imitate not just the wet and dry
conditions but their alternation too, resembling changing weather condi-
tions in nature. In this alternating condition differences in radial growth

rate, as well as a deviation in structure can be observed. The colony expands
faster (Fig. 4c) in thewet period and forms a denser, better-defined structure
in the dry period (Supplementary Fig. 4). The radial growth rate for the wet
period in thefirst weekwas 1.09mm/day (st. dev. 0.03)while in the dry case,
it was 0.45mm/day (st. dev 0.01). The second phase showed similar trend,
where wet conditions speed up colony expansion, with 0.97mm/day (st.
dev. 0.02) for wet conditions and 0.34mm/day (st. dev. 0.05) for dry con-
ditions (Supplementary Table 1). Although second-phase growth rates are
lower than those in the first phase (agar is aging), the radial growth rates
depend on the actual condition and not on the condition colonies have been
earlier.

Total cell counts and drymasseswere determined after 14 days for all 4
cases confirming that larger colony size means more cells and larger dry
weight as well (Fig. 4b). Colony areas determined from pictures taken
throughout the experiment were used to determine the model parameters
for the various conditions (Supplementary Table 3, Fig. 4a, c). Our
assumption for the cause of the differences based on literature is twofold:
one is the agar surface hydrophobicity that enables the sliding of daughter
cells further from their mother31,44, the other is increased diffusion rate in
softer agar. Accordingly, ‘division distance’ and ‘diffusion’ parameters
(Supplementary Table 2) were optimized to describe these two phenomena.

Simulation and experiment results both show that when colonies
adjust to the changing environment, they form concentric rings of regions
with different densities (Fig. 4a), furthermore simulations capture colony
growth dynamics in all conditions (Fig. 4b−d).

Predicting colony growth on plates with a nutrient gradient
Nutrients in nature are rarely available in a standard, even concentration as
commonlyused in the lab.Wehaveused themodel topredict colonygrowth
in an environment with uneven nutrient distribution.

In the experiment, standard rectangular plateswerefilledwith agar and
a gradient of nutrients was established. To create a nutrient gradient, YPD
was added only to 1/5th of the plate area in two different concentrations
(standard and 5-times concentrated YPD agar; see details inMethods). The

Fig. 3 | Determining the impact of inoculation conditions. a 24 colonies grown
from various initial droplet sizes (marked µl drops) and initial cell numbers (labeled
initial cell counts) after growth for 14 days. Blue circles indicate the size of the
colonies on the second day which approximates the original area occupied by the
inoculating droplet. (Scale bar represents 1 cm). b Simulation of the model with a

similar layout. Blue circles indicate the area after 2 days. cArea growth curves of the
experiment (markers of 4 replicate plates) and fitted simulations (solid lines).
Dashed line at 100 mm2 was inserted for easier comparison. Simulation results are
scaled 55.6 pixels to 1 mm2.
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remainder of the plate was filled with agar only. This way, the 5-times
concentrated plate carried the same amount of nutrients as the control plate
that had YPD agar everywhere (Fig. 5). Colonies were inoculated on the
lower 4/5th of the plates, where high YPD agar was not present. The
inoculation pattern was designed to leave out colonies from each row while
keeping 2 fully filled columns. This enables us to test how a growing colony
in upper gradientmight influence growth behind at a lower nutrient region.
This is also another validation test for the model.

The simulation of this setup was performed by utilizing the parameter
set determined by fitting the experiments with 24 colonies (Fig. 3) (exact
values are shown in Supplementary Tables 2 and 3). The gradient was
created by diffusion after adding the virtual nutrient to the top 1/5th of a
rectangular empty simulation plane at the simulation initialization step.

Experimental results showed an early growth advantage of colonies on
the control plate, especially those that were further away from the nutrient
source as expected from the local scarcity of nutrients. By the 13th day (as
pictured in Fig. 5a) the control plate displayed the signs of nearby colonies
slowing down the growth of nearby regions, resulting in deformed colony
shapes. At the same time, colony growth was visibly correlated to the
nutrient gradient on the nutrient diffusion plates, with colonies expanding
more towards the food source. The colonies in the bottom row were not
showing anyarea expansionon the 1/5thnormalYPDplate.Whereason the
5-times YPD plate, all colonies were able to increase colony areas as pre-
dicted by our model. The observed colony expansions between 13 and
20 days were also fitting our model’s predictions. On all plates, colony
growth was observable towards ‘free’ areas, from which directions further
nutrients became available by diffusion. This supports the power of simu-
lation in uneven environments even though the model was not trained on
data collected in such conditions. Simulations can give an additional insight
into the distribution of actively dividing cells, which is difficult to measure
experimentally45. By plotting these actively dividing cells, we can predict
where subsequent growth is expected to happen (Fig. 5c).

Predicting maximal colony size
In our parameter searching simulations, we noticed that the simulated
colony could cover the whole simulation plane. During the above presented
experiments, we have realized that increased agar wetness can maintain
diffusion and provide nutrient availability for an extended period. This led
to the hypothesis that periodic refeeding of the agar plate with liquid media
can keep the colony growing unlimitedly (Fig. 6a). To test this experi-
mentally, we created an environment where we could refeed the agar, where
the colony grows (see more details in ‘Methods’). In this setting we have
grown a colony in a large (135mm) Petri dish for more than 4 months
(Fig. 6b). With biweekly refeed, the agar kept its wetness and fresh YPD
provided nutrients for continued and renewed growth. The colony has
grown over 10 cm in diameter over 4 months. Refeeding (with YPD) has
caused growth rings to develop, which was also present in our computer
simulations (Fig. 6a). In addition, segmental growth was observable in the
experimental colony, which was only present to a lesser extent in the
computer simulations. This could be due to epigenetic differentiation or
differential adaptation during the lengthy experiment46. These are currently
not incorporated in our simulator, however, our agent-based framework is
suitable for incorporating stochastic changes and adaptation of cell para-
meters as well.

It is unclear what determines how a new inoculation nearby an already
growing colony can influence the growth of the original colony. Our model
predicted that a nearby colony of agents with similar parameters can inhibit
the growth of the original colony in the direction of the new inoculate or
slow down the growth if the new drop was on the edge of the old colony
(Fig. 7a). To test this experimentally, we have inoculated fresh exponential
growing cells on the edge of the growing colony and next to the colony
(Fig. 7b). Both simulations and experiments show that two colonies can-
not grow into each other, rather growth inhibition zone is formed between
the colonies (Fig. 7). This could be the result of nutrient deprivation in
this zone.

Fig. 4 | Wetness of agar plates affects the size and
structure of colonies. a Experiments (upper row,
n = 3) and simulations (bottom row) of colony sizes
and structures are shown inwet, dry, and alternating
conditions after 14 days. The outer rings around the
agar patties were filled with liquid YPD for ‘wet’
conditions and were put on a larger solid YPD plate
with fresh media for ‘dry’ condition. Conditions
were refreshed once after 7 days, either for the same
or for the other condition. Simulation of similar
conditions are plotted in the bottom row. Scale bar is
10 mm. b Cell counts, and dry weights of the colo-
nies were determined after 14 days (color codes
match the colors of a). c Agent count at the end of a
14 day simulation. d The area of the colonies in the
various environmental conditions is shown for both
the experimental (markers for each experiment
separately) and one representative simulation result
per experiment (lines). The vertical line shows the
time of refeeding. Simulation results are scaled 55.6
pixels to 1 mm2.
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Fig. 5 | Colony growth in uneven environment. a Colonies were grown on
OmniTray plates with even (left) or uneven (middle and right) nutrient supply for
20 days. Inoculation happened on the lower part (80% of the area) of the plate only,
while nutrient was supplied on the top part (20% of the area) in the two plates on the
right. Nutrient supply is indicated on the left side of the panels: control (first plate)
had YPD in the whole plate, on the second plate 20% YPD and 80% only agar was
used, while on the third plate, 20% 5-times concentrated YPD and 80%only agar was

added. Pictures were taken on day 13 after inoculation. Green circles indicate initial
colony sizes, 1−2 days after inoculation and magenta circles indicate area after
20 days, showing in which directions colonies expand between 13 and 20 days. The
experiment was repeated twice with 2 plates per condition. Scale bar is 10 mm.
b Colony area and shape are shown from the simulations of the layouts above.
cActively dividing cells on day 13 of the simulations, predicting directions of future
growth. Agent density is indicated on a color scale.
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Discussion
Measurements on yeast strains are performed in liquid or solidmedia, while
in their natural environment yeast cells grow in a mixture of these two
conditions, most often on some wet surfaces (bark or damaged fruit). Here
we aimed to investigate yeast colonies growing in time-varying and uneven
environments and built an agent-based model to understand the driving
and limiting factors of colony growth. We demonstrated the capability of
our model of yeast colony growth to reproduce colony growth dynamics in
various environmental settings. Besides our primary goal of improving,
validating, andparametrizing a realisticmodel of yeast colony formation,we
have gained valuable insights into important determining factors of colony
size and development dynamics.

Both experiments and the model highlighted that the size of the initial
inoculatingdroplet has a greater influenceoncolonygrowth than thenumber
of cells in the initial droplet. This could be a result of local competition for
available nutrients of neighboring cells in a dense droplet. Increase in cell
number on a fixed drop size cannot increase much on the local proliferation
of cells, but spreadingout the samenumber of cells in a larger droplet can give
them a wider area and lower density to proliferate faster.

Successful fitting of the experiments, where colonies have grown in
various distances of each other (Figs. 2, 7) andwhere one line of the colonies
was spacedwith an offset from the edge of the late (Fig. 3) highlights that the
model can also predict how colonies at various distances of each other and
the edge of plates can grow. Yeast colonies are commonly laid out in 96,
384 dots on a plate format, and densities of up to 6144 colonies per plate
were also plotted8,9. Inmost cases, statistical corrections are applied to adjust
for the effect of irregularities across or between the plates17 but our

simulation can be also used to predict how colonies would grow if com-
petition for food is the only communication between them.

Limitations of colony growth is a recurrent and still not fully under-
stood topic. Nutrient availability could be limiting26, or the accumulation of
an inhibitory factor (such as ammonia) produced by aging colonies15 could
limit colony size. After integrating the experimental and modeling results,
we have concluded that nutrient limitation by reduced diffusion or reduced
availability could be the key driving force of colony growth. The impact of
local nutrient availability on colony growth is best illustrated on plates with
uneven nutrient levels (Fig. 5). The 5-times concentrated YPD did provide
enough nutrients to allow further away colonies to grow while diffusion
from the normal YPDwas only enough to feed the closer half of the colonies
(Fig. 5). With these we do not rule out that ammonia or other inhibiting
factors are releasedand slowcolonygrowth,weonly claimthat all results can
be fitted with a model solely focusing on nutrient diffusion.

The developed computationalmodel is able to simulate colony growth
with matching dynamics to experimental results, yet the model has several
limitations. For instance, the fine structure of the colonies could be more
similar between the in-vitro and in-silico experiments. This feature, and the
size of the colony could be considered after implementing physical forces
between the agents and between the agents and their environment (agar
medium)47,48. There are examples formodelswith considerations of physical
forces dominantly in the bacterial context27,49,50 and few more specific for
yeast51,52. Implementing these additional constraints to colony development
could make our model even more realistic, however it would increase its
computational requirements (or reduce the size of colony that could be
simulated) and the required experimental data at the same time. Additional
molecular biological mechanisms could also influence colony growth. The
continuous thinning and drying of the medium could slow down colony
growth. It could be introduced to the model as time and/or nutrient avail-
ability dependent divisiondistance. Yeast cells can build extracellularmatrix
around themselves, and this matrix stabilizes the three-dimensional struc-
ture of colonies and affects nutrient flow inside the colonies. Cells and this
matrix form together the macroscopically visible colonies10. The agents in
the current version of the model represent a group of yeast cells andmatrix
components (see methods and Supplementary Table 4). Defining and
visualizing the matrix itself with realistic physical properties could
approximate the real macroscopic colony sizes and shapes better. It could
help solving the issue that the edges of the simulated colonies are more
irregular in some cases than the corresponding experimental ones (e.g:
Fig. 3). In the current version, colony shapes are defined based on the
simulation grid cells with agents, while in the images of in-vitro colonies
only regions with a sufficient amount of cells are recognized as part of a
colony. Representing the simulated colony shapes and areas with the spread
of their extracellular matrix could result in smoother colony shapes. Sto-
chastic changes could be incorporated into the model as well by defining a
probability of events (e.g., cell division, death, G0 transition, nutrient

Fig. 6 | Growing a giant S. cerevisiae colony (dia-
meter > 10 cm). a Simulation of the colony reflect-
ing the procedures explained on the refeed
experiment. b A yeast colony was inoculated by a
3 µl drop on a 2% agar YPD plate on a 135 mm
diameter Petri dish. The sides of the gel were
removed and 8 ml of fresh liquid YPD media was
added to the agar once every 2 weeks. The image was
taken on day 116 after inoculation. Scale bar
is 10 mm.

Fig. 7 | Growing young colonies next to an aging one. New droplets were inocu-
lated on and next to an aging colony after 20 days of initial inoculation. Images of the
colonies formed (b, n = 4) and their simulations (a) are shown on days 1, 14, 22
(2 days after second inoculation), and 36 (16 days after second inoculation). Scale bar
is 10 mm.
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uptake) when their conditions are satisfied. Overcoming these limitations
and implementing the improvementsmentioned could set the directions for
developing the model further.

The edges of the simulated colonies (when simulating solid agar
growth) showa segmentedmorphology (Figs. 1, 3, 6, 7). This is gettingmore
apparentwith the limited availability of nutrients as colonies age. Pictures of
the experimental colonies show this less apparently, until they grow to a real
large size (Fig. 6). In the simulated colonies extracellular matrix is not
present, while in real colonies these play an important role in holding cells
together and keeping a sharp colony front7,53.

Wehave createda software tool to simulate yeast colonies andused this
model to explain the growth dynamics in numerous non-standard andnon-
constant environments. This helped us to understand the dynamics in non-
standard environments and the way in which nearby colonies interact with
each other. There is a clear need for a better understanding of microbial
colony formation54. Since the tool is extendable to multiple strains and
interaction types, potential later applications can reveal further details of the
mechanisms controlling yeast colony formation in mono- and mixed cul-
tures. Our presented experiments and model focus on a single type of yeast
strain (commonly used Y55), but with strain-specific parametrization, the
method can be applied to understand how interacting strains grow together.
This field is already of high interest32,55–57, and the presented combination of
quantitative experiments andfitted agent-basedmodels couldhelpus togive
a systematic insight into microbial ecology58.

Methods
Strains and growth conditions
All experiments were carried out using Saccharomyces cerevisiae strain Y55
a/α HO::KanMX4. Media was varied according to the experiments. Stan-
dard YP (1% yeast extract (Duchefa), 2% peptone (Duchefa)) dissolved in
double-distilled water was autoclaved, and glucose (Molar Chemicals) was
added afterward in 2% final concentration. 5 times concentrated YPD was
prepared with 5% yeast extract (Duchefa), 10% peptone (Duchefa), and
glucose added in 10% final concentration. For YPD plates, agar (Duchefa)
was added to YP before autoclaving; in most of our experiments 2% unless
otherwise specified. Plates were poured with defined volume, 30ml for
regular (85mm) Petri dishes, and 50ml for OmniTray (Nunc™OmniTray™
Single-Well Plate cat.no: 242811) unless otherwise specified. Plates were
poured the day before the experiment and left to dry at room temperature
for 24 h. 100 µg/µl G-418 (Duchefa) was added to prevent contamination
during lengthy experiments. Cells were grown overnight in 2ml YPD on a
shaker and inoculation of a 3 µl droplet was carried out directly from the
preculture onto the agar plate. After letting it absorb the droplet, colonies
were grown at 30 °C over the course of the experiment. Experiments with a
liquid phase were left at room temperature to prevent spills and washing
away of the colonies. Single cells were separated using Singer MSM 400
micromanipulator microscope (Fig. 1b).

Inoculating one to six colonies
Regular (85mm) Petri dishes were poured with 30ml soft-agar YPD (1%
agar). Left to dry overnight. Yeast cells were inoculated as described above.

24 droplets with varied cell number and droplet size
Cell count was determined from the overnight preculture using a hemo-
cytometer. Appropriate dilutions were prepared for each concentration
according to the combination of droplet size (0.5, 1, 2, 3, 4, 5 µl) and initial
cell count (1000, 2000, 4000, and 8000) pairs. I.e. preculture was diluted to
2*10^6 cells per ml for the 0.5 µl droplet for 1000 initial cell number, this
same dilution was used for the 1 µl-2000 cells spot as well. Droplets were
spotted using a grid template placed under the plate. The layoutwas shuffled
for control plates.

Wet-dry experiment
Solidified agar plate with 25ml YPD in a regular (85mm)Petri dish was cut
with a 50mm circular cutter, the outer ring was removed, and 12ml of

media (either liquid or solid) was poured around the inner disc. After 7 days
remaining liquid was removed, or solid plates were cut with the method
specified above, and fresh media was added to the outer ring.

Gradient diffusion plate
50ml agar plates were poured (2% agar dissolved in water and autoclaved)
and left to dry for 24 h. The next day a straight cut was made with a blade
approximately 2 cm from and parallel to the shorter edge of the OmniTray,
the agar piece was removed and 10ml YPD agar or 5-times concentrated
YPD agar was added to the hole. Plates were left to dry before inoculating
3 µl droplets from overnight preculture in a 4×4 grid leaving out selected
locations.

Growing a giant colony
75ml YPD agar was poured into a 135mm Petri dish. On the next day,
4 slots were cut with a blade on the sides of the agar and liquid YPD was
added after colony inoculation(Supplementary Fig. 5). Evaporating YPD
was complemented biweekly. The plate was kept at room temperature.

Re-inoculation experiment
To retrieve Fig. 7, new droplets (3 µl as the original) were inoculated on the
side and next to an aging colony after 20 days of initial inoculation.

Dry and wet biomass measurement
10mlwaterwasmeasured into a 50ml tube, the colonywas scraped into the
tube and weight was measured before and after scraping using an analytical
balance. Samples were freeze-dried to determine dry mass. Tubes con-
taining the samples were frozen and cooled to−40 °C and introduced to a
vacuum till dried for 2 days. Finally, sample tubes were measured again
using an analytical balance.

Cell counting
Selected colonies were excised from the plate (together with the underlying
agar), placed in 10ml water, vortexed, and diluted 10-fold, when necessary,
then counted using a hemocytometer.

Imaging
Two permanent photo apparatus were set up for qualitative analysis using
the VWR Imager CHEMI Premium gel documentation system (Figs. 1b, 5)
and one with a Fujifilm Finepix Z30 camera (Figs. 2, 4, 6, 7). For demon-
strative purposes, the photos were taken with the phone’s camera (Fig. 3)
and stereomicroscope.

Image analysis
The colony areaswere determined using the software ImageJ. The threshold
was determined using the Auto threshold function and the Analyze particle
tool was used to measure colonies (colonies missed by the tool were
manually outlined andmeasured). A custom script was used to scale up the
process. Cross-sectional intensity profiles were generated using FIJI’s built-
in Plot Profile function.

Figures and statistical analysis were prepared using Python 3, Micro-
soft Excel and MATLAB.

Modeling
The model was implemented in MATLAB (version: R2020b). The config-
uration (.csv)file contains the parameters of the simulation, its visualization,
the simulated plate, the nutrient, and the strains. The model can currently
handle a maximum of 24 colonies/strains and can be reached from https://
github.com/CsikaszNagyLab/yeast_colony_growth_model

General setup, scales, and simplifications of the model
Thematerial distribution through the layers wasmodeled via 2-DGaussian
filtering of material values in the grid cells using the imgaussfilt function
from the image processing toolbox of MATLAB. This method was chosen
due to performance reasons. The standard deviation of the Gaussian
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smoothing kernel is defined by the sigma parameter of the model. The two
layers can have different sigma parameters. Flow (definedby equation 1 and
2) between the layers drivesmaterial equalizationwith a speed influenced by
the flow rate parameter.

toplayeri;j ¼ toplayeri;j þ
deeplayeri;j

initdeep
inittop

� � � toplayeri;j

0
@

1
A � flowrate

2

deeplayeri;j ¼ deeplayeri;j �
deeplayeri;j

initdeep
inittop

� � � toplayeri;j

0
@

1
A � flowrate

2

,where toplayeri,j is a grid cell of the upper nutrient layer, deeplayeri,j is the
corresponding grid cell in the lower nutrient layer, inittop is the initial
nutrient content of the top layer, initdeep is the initial nutrient content of the
deep layer, and flowrate is the flow rate of the nutrient between the two.

Nutrient, energy levels, their uptake and consumption values are in
arbitrary units but based on their ratios and assuming two hours division
time for active yeast cells, one simulation step in the model corresponds to
approximately 1 h. All the presented simulations use fixed boundary con-
ditions (mimicking a Petri dish) and yeast-like growth patterns (not fila-
mentous which is more frequent in environmental strains, not in the ones
optimized for laboratory work). Signal production, time-dependent drying
outof agarwasnot considered and the activityofG0cellswas set to zero level
in order to explain experimental results with the simplest model possible
concentrating on the effects of nutrient availability and environmental
conditions (e.g.,: agar viscosity). The aimof themodel (in its current state) is
to reproduce colony areas and shapes, not the cell numbers, so the initial
number of cells was onemagnitude smaller than the experimental ones and
the agent numbers of the final colonies also fall behind the experimentally
estimated cell numbers (one agent in themodel does not correspond to one
yeast cell). Despite these simplifications, the model could approximate the
in vivo colony sizes and growth dynamics. One to one match between cell
number and agent number would have led to lengthy simulation times and
high memory usage, which would not allow parameter estimation. On
Supplementary table 4 we show that increase of cell numbers and rescaling
growth parameters leads to similar colony sizes. We also see on Table S4,
that further reduction in agent numbers leads to reduced colony size, thus
our chose resolution is optimal formatching colony growthdynamics,while
keeping computing time in a reasonable limit.

Visualizations
If virtualization is enabled in the configuration file, the living agents are
plotted on the top of the simulation field which is colored according to its
nutrient content (the sum of the two nutrient layers). Different agent states
anddifferent agent types canbe shownwith separate colors (making it easier
to study strain-strain interactions). After the simulation, the outputs can be
visualized frommultiple aspects. The number of agents separated by strains,
metabolic states, and the colonies’ areas can be plotted in the function of
simulation steps. Final agent density patterns on the simulation grid are
representing thefinal colony shapes.Theseplots canbegenerated for all cells
(living anddead), living (active andG0), and active cells separately about the
entire plate or about specific strains as well. These final images can be post-
processed to be visually more comparable with the photos of in vivo
colonies.

Parameter estimation
The fitting of model parameters to experimental data was performed in
MATLAB using a built-in Nelder-Mead simplex search algorithm
(fminsearch)49 initialized from a set of initial conditions producing realistic
colony sizes and shapes with a reasonable number of agents (and thereby
reasonable simulation times). The minimized objective function was the
sum of squared differences between simulated and experimental colony

areas (expressed in the number of pixels) as described in equation 3.

diff ¼
Xn
i¼1

simi � ref i
� �2

,where diff is sum of squared difference, n is the number of experimental
points, refi-s are the experimental colony sizes and simi-s are the corre-
sponding simulated colony areas (expressed in pixels).

Experimental measurement data was sparser than the simulated one
(typicallymaximumone photo was taken about the colonies each daywhile
one simulation step in themodel represents approximately onehour), so the
simulated data points were sampled, and the temporally matching point
pairs were used in the fitting. Fitted parameters consist of cell division
distances, nutrient diffusion rates, initial nutrient levels, and initial
colony sizes.

Statistics and reproducibility
Experiments included typically 3−6 replicates repeated at least once. Actual
sample sizes are indicated in the figure legends.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data supporting the figures are stored together with their codes on the
Github repository https://github.com/CsikaszNagyLab/yeast_colony_
growth_model (https://doi.org/10.5281/zenodo.10848933)59.

Code availability
Link to the code, to the configuration files (with the parameters used for the
simulations of the manuscript), and to the instructions of running the
model: https://github.com/CsikaszNagyLab/yeast_colony_growth_model
(https://doi.org/10.5281/zenodo.10848933)59.
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