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Abstract

In this paper, we introduce a modified cellular particle filter (CPF) which we mapped on a graphics processing unit
(GPU) architecture. We developed this filter adaptation using a state-of-the art CPF technique. Mapping this filter
realization on a highly parallel architecture entailed a shift in the logical representation of the particles. In this process,
the original two-dimensional organization is reordered as a one-dimensional ring topology. We proposed a
proof-of-concept measurement on two models with an NVIDIA Fermi architecture GPU. This design achieved a 411-μs
kernel time per state and a 77-ms global running time for all states for 16,384 particles with a 256 neighbourhood size
on a sequence of 24 states for a bearing-only tracking model. For a commonly used benchmark model at the same
configuration, we achieved a 266-μs kernel time per state and a 124-ms global running time for all 100 states. Kernel
time includes random number generation on the GPU with curand. These results attest to the effective and fast use of
the particle filter in high-dimensional, real-time applications.

Introduction
In applications in the field of image processing [1,2], nav-
igation [3], and financial mathematics [4,5] we deal with
non-linear state-space models subject to additive noise
which is not restricted to Gaussian noise. Even if each
state only depends on the previous state (i.e. the sequence
follows the Markov dynamics [6]), a Kalman filter [7] is
suboptimal for the state estimation due to non-linearity
and non-Gaussian noise. Furthermore, an analytic solu-
tion is often not available. In contrast, sequential Monte
Carlo methods (SMCM) offer a probabilistic framework
that is suited to non-linear and non-Gaussian state-space
models. In our work, we focus on a particle filter (PF) [8]
which is both part of the SMCM algorithm family and can
be considered an extension of a Kalman filter. Our main
aim is to introduce a fast and reliable PF on a GPU.
We restrict ourselves to particle filters which use

sequential importance resampling (SIR) [9]. The PF algo-
rithm (as described in the next section in detail) has a
high running time due to the resampling step - according
to the complete cumulative distribution; therefore, an
adequate parallel implementation would fetch a remark-
able speed-up. The classical resampling algorithm of
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this process needs N processors to reduce its computa-
tional need from O(N) to O(log(N)), and so, this par-
ticle filter was considered unsuitable for parallelism. It
should be noted that this statement holds as long as the
the complete cumulative distribution is required for any
particle.
Whilst the price of a device is relatively low, graph-

ics processing units (GPUs) have a high computational
efficiency. Therefore, GPUs represent an attractive imple-
mentation platform. Since GPUs are spreading fast,
thanks to the game industry, and developing rapidly, com-
putational effort is still increasing by leaps and bounds.
There have been some former implementations to par-

allel architectures [10-19]. In [11], an implementation
strategy is proposed which is parallel; however, it cannot
maintain the local connections of the particles. The par-
ticles are split into smaller groups (around 100 particles)
which perform operations independently. The informa-
tion exchange among the particle groups is occasional;
share ratio is suggested at around 25%. Researchers admit
that the reduced flow of information of the distributed
particle filter degrades the quality of estimation compared
to the original algorithmwhich resamples according to the
complete cumulative distribution.
Besides continuous information sharing, random num-

ber generation has a significant effect on the filter result.
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The simple solution is creating random numbers on the
CPU using any of the many implemented reliable random
libraries proposed in [10]. However, these researchers are
aware of the great disadvantage of this technique, mainly
the huge delay raised by data transfer. Hence, they prefer
a sufficient GPU random sequence generator instead.
In the resampling step, each particle requires infor-

mation from all other particles. This adds a high
computational delay. Resampling is based on the rela-
tive importance of the particles, but the technique is
not restricted to uniform sweepstake over the weights
(systematic resampling).
Metropolis resampler [20] in each resampling step iter-

atively selects B times a candidate according to a given
rule for each particle. Since the aforementioned rule is
based on pairwise operations, the efficient mapping on
many-core architecture is realizable as follows.
For each p ∈ 1, . . . ,N particle in each i ∈ 1, . . . ,B iter-

ation, two main parameters, aip and sip, are used, where aip
stands for the actual particle and sip stands for the selected
particle; aip is initialized with particle p. With uniform dis-
tribution, we draw a uip random number on [ 0, 1) and sip
particle from the complete particle set. If the ratio of the
weights

wsip
waip

is over uip, the selected particle is indicated

as actual. This pairwise operation can be performed inde-
pendently; therefore, efficient implementation is possible
on parallel architecture.
Resampling can also be accelerated if the number of par-

ticles is decreased. However, there is a trade-off between
particle number and estimation accuracy. The spreading-
narrowing technique in [12] proposes a solution. A toler-
able N number of basis particles generates an N × P large
set by propagating each particle based on the system tran-
sitionmodel for a sequence of P states. Each Pi subset then
delivers a single particle based on a local particle selection
process. It either uses maximizing importance selection
(MIS), taking the highest weighted particle, or it uses sys-
tematic resampling (SR) on the weights. SR has a lower
complexity than a global resampling on an N × P size set
as P takes values from{10, 20, 50, 100, 200, 500} based
on the current application, and for each Pi set, it can be
performed parallel to each other. While MIS has an even
lower complexity, it is more sensible to the noise intro-
duced by the artificial propagative spread of the particles.
For the measurements, they used a bearing-only tracking
(BOT) model with 25 time steps; therefore, we can make
direct comparison for the estimation error. For [12], the
position error is in the range of 0.06245 to 0.06226, which
is slightly lower than our error, but still the same range.
Execution time, which is the sum of sampling, weight
normalization and resampling times in [12], and total run-
time in our work (including memory transfers, file I/O,
etc.), shall be compared to our proposed algorithm with

regard to the different devices, which still indicates that
our technique is faster (see Table 1).
We investigated [13-15] from CUDA ZONE, which also

addresses particle filtering on GPU or parallel and GPU.
In [15], only the weight calculation is performed on the
GPU as the focus of this paper is not particle filtering.
However, this work is slightly out of our scope as the
aim was the fast estimation of face tracking with PF;
the contribution of parallelism on the GPU is relevant
in the total speed-up. Three different case studies are
presented for Monte Carlo methods in [13]. They found
out that global resampling has a significant influence on
the runtime, and they achieved 10 to 37 times speed-
up compared to a single threaded CPU implementation.
The measurements were made with the use of a factor
stochastic volatility model; therefore, direct comparison
to our benchmark model is troublesome. However the
computations run on the GPU, the resampling - unlike
in our proposed work - is not parallel but sequential. In
[14], resampling is performed with a technique based on
using an offline-created and offline-uploaded texture of
uniformly distributed random numbers. The focus of [14]
was single- andmultiple-object tracking, using skin detec-
tion and spreading the region of interest; therefore, the
lack of common model encumbers the direct comparison
of the result to our proposed method.
However, in [16], the GPU device is different (making

the exact time comparison difficult), and measurements
were made using the BOT model. The proposed parti-
cle filter method is parallel, still the random numbers are
generated on the CPU, and there is no information share
among local processes (e.g. in resampling). The posi-
tion errors are in the same range and almost identical.
Execution time in [16] is expressed as the sum of sam-
pling, weighting, weight normalization and resampling
times, whilst our presented execution time includes all
operations (file I/O, memory transfers, etc). A real-world
problem is presented with a particle filtering method in
[17]. PF is implemented on the GPU with a distributed
resampling. The work is based on sub-filters which have
a limited information share among themselves. Commu-
nication can be represented as a graph where sub-filters
correspond to nodes and edges are defined arbitrarily
(as an attribute). Before resampling, a particle exchange
step is performed among neighbouring graph nodes.
However, this approach is not completely local; the
amount of the exchanged particles is relatively small.
Therefore, information flow is not as complete as in the
case of the sequential (cumulative distribution-based orig-
inal algorithm) or even as in our proposedmethod. Finally,
we would like tomention [18] and [19] which both present
parallel but non-GPU particle filters. In [18], the particles
are split to subsets. Similar to [17], each subset performs
the sub-steps of PF independently; however, there is no
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Table 1 Highlighted related works

References GPU type GPU computes Modela Number of
SMs on GPU

Number of
cores

GPU clock Time included Runtime data

[12] GTX 280 All; spreading-
narrowing
technique

BOT model,
25 time steps

30 240 1.3 GHz Sampling +
weight
normalization +
resampling

1,050 particles
79.4 ms, position
error 0.06245; 2,000
particles 124.8 ms,
position error
0.06226

[13] GTX 280 All; sequential
resampling

A factor
stochastic
volatility
model

30 240 1.3 GHz SMC algorithm:
no further details

8,192 particles
82 ms; 16,382
particles 144 ms;
65,536 particles
465 ms

[14] 8800 GTS All; resampling
uses offline-
initiated texture

Skin detection
+ spreading
region of
interest

12 96 1.2 GHz Object tracking
time; no further
details

1.44 - 13.55 speed-
up in fpsb

compared to CPU.
Best 90 fps for
multiple- and 225
fps for single-object
tracking.

[15] 8800 GTX Weight
calculation

Face tracking
model

16 128 1.35 GHz Face tracking
algorithm time;
no further
details

No execution
time measurements
for particle filter

[16] 9400M All; random
numbers from
CPU

BOT model,
25 time steps

2 16 450 MHz Sampling +
weighting +
weight
normalization
+ resampling

For 2,048 particles:
best time 168.3 ms,
position 0.078 -
0.083; for 4,096
particles: best time
168.0 ms, position
0.077 - 0.081

[17] GTX 580 All; distributed
resampling

Dynamic
equations to
model a
robotic arm

16 512 2 GHz Sum of kernels:
random number
generation +
sampling + local
sort + global esti-
mate + exchange
+ resampling

64,000 particles
0.3 ms

Proposed GTX 550 Ti All; all parallel BOT model,
24 time steps

4 192 1.8 GHz All operations
(including mem-
ory transfers, PF
steps and file I/O)

2,048 particles 77ms
with 0.09 position
error; 16,384 parti-
cles 77 ms 0.07 posi-
tion error

Summary of related works including the following parameters: used model, outline of the technique and the GPU if measurements were made on it. Direct
comparison is often hardly feasible due to the differences of the mentioned parameters. aAs given in the references; bframes per second.

information share among the subsets. Central estima-
tion is calculated using the results of subsets. In [19],
three different techniques are presented, and locally dis-
tributed particle filter is considered as giving the best
speed-up and estimation. Also, this is the closest from
the three presented methods to our approach; however,
operations are performed without any information share
and only simulation results are given for a discrete time
non-linear dynamic model of nearly constant turn. For
the summary of related work, please see Table 1 where
we highlighted the most relevant GPU-related works. The
table also reveals the difficulty of direct comparison of
the results due to the different models, data and GPU
devices.

We can say that resampling is a key point in SIR parti-
cle filtering. Approaches to deal with SIR resampling try
to optimize the speed quality trade-off for the given set-
up. Cellular particle filter(CPF) [21] introduces a third
approach for the resampling problem by changing the
logic representation of PF to a two-dimensional (2D),
locally connected grid inspired by cellular neural network
(CNN) architecture [22]. Each element in the grid is con-
nected to each of its eight neighbours enabling rapid local
information flow. The critical resampling step can then be
performed on a subset in an r radius neighbourhood.
Our proposed algorithm is based on cellular parti-

cle filter [21], using the idea of local neighbourhoods.
Due to the CNN-type representation and the decreased
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dimension of resampling sets, CPF offers a solution for
the problem of reduced local information change, which
is stated in [11]. However, this representation is not opti-
mal for a GPU architecture. Hence, we made some fur-
ther modifications to achieve an efficient implementation
which exploits the characteristics of GPUs. Besides, one
of our principles is to generate random sequences on the
GPU since NVIDIA SDK Mersenne Twister proved to be
insufficient at low numbers. Therefore, we explored possi-
ble solutions and finally propose two different approaches
for random number generation.
This paper is organized as follows: the ‘Background and

theory’ section describes the necessary background and
theory for hidden Markov models (HMMs), particle fil-
ters, especially cellular particle filter, and architectural
perspectives. In the ‘Our proposed method’ section, we
introduce our proposed method in detail. The ‘Evaluation
and results’ section provides information about applied
measurement techniques and our results. Finally, The
‘Conclusions’ section delivers our conclusion.

Background and theory
HiddenMarkov models and particle filtering
HMMs consist of two stochastic processes. One of them is
the trajectory of hidden states xt according to t = 0, 1, . . .,
determined by Markov dynamics:

xt+1 = ϕ(xt , e1(t + 1)) (1)

The other contains observations yt , for t = 1, 2, . . .,
depending only on the current hidden state plus an addi-
tive noise which is not limited to Gaussian:

yt = ψ(xt) + e2(t) (2)

These notable extensions transfer the resolution beyond
the Kalman filter [7] to the scope of particle filtering. In
case of state estimation, it is considered that ϕ,ψ , func-
tions and distributions of e1(t) and e2(t) are given. For
more information about hidden Markov models, see [6].
A particle filter is a tool for estimating the hidden states

based on the observation. It is not an analytical calculation
but the use of a set of particles at each time step that fol-
lows the model dynamics. The algorithm is built up from
three main steps in each time t (i.e. state).
The first step is error calculation which assigns each

particle a fitness value. It is performed between the cur-
rent particle value and the current observation value
(same for all particles at a time step) as described in
Equation 3. L stands for the likelihood value, for each
i = 1, . . . ,N particle, and l is the density function of the
noise of the hidden process (e1(t)):

Lit = l (yt − ψ(x)) (3)

Each particle weight is set based on this likelihood:

wi
t = Lit (4)

where Lit is the fitness value of the ith particle, and for
simplicity in resampling, each weight is normalized:

wi
t = wi

t∑N
j=1 wj

t
. (5)

The second main step is resampling. While there are
many alternations, we focus on a particle filter with
sequential importance resampling [23]. We choose a new
ξ ′ particle set from our current particles, ξ ′i = ξ ′η(Ui),
where η(Ui) stands for the uniform random sweep-
stake, using the set of corresponding normalized particle
weights wt (see Figure 1 and Equation 6, for particles i, j =
1, . . . ,N):

P(η(Ui) = j) = wj
t (6)

The resampled set ξ ′
t is used for the current estimation

(e.g. taking the mean). The last main step of the loop is the
iteration, which is identical to sampling at the beginning
of the loop. In this last step, we use the model to generate
the next time step’s initial particle set using the model:

ξ it+1 = ϕ(ξ it , e1(t + 1)) (7)

where ξ it are the resampled particles, i = 1, . . . ,N . Parti-
cle filtering technique has been used since 1962 [24], and
SIR particle filter has been used since 1993 [23]. Still, the
proof of convergence was published only 18 years later
[25]. More information about particle filters can be found
in [23,26]. Henceforward, ‘original algorithm’ stands for
the algorithm described in this section.

Cellular particle filter
In the resampling step, for each retake, we have to use the
whole particle set. This is highly time-consuming and for a
long time was considered not parallelizable. Cellular par-
ticle filter [21] offers a solution for this problem, and in
contrast to other distributed particle filters [11], it main-
tains local connectivity, which allows for each particle to
access the information of its neighbours in each time t.
This ensures the same or, at some parameters, even bet-
ter quality of approximation. To provide theoretical proofs
for our concept is beyond this articles’ scope, but see [21]
for some experimental validation.
The main idea lies in the logical representation. The set

of particles are organized in a CNN-inspired architecture,

Figure 1 Resampling. Split [0,1] to subintervals for resampling. Each
interval has the width of the corresponding normalized weight wi

where i ∈ 1 . . .N. We generate uniformly distributed random
numbers for resampling, which means the bigger wi value particle i
has, the more likely it is to be picked.
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namely, a locally connected two-dimensional grid with
uniform elements where each element is only connected
to its eight neighbours. Based on the connections, we can
define a neighbourhood for cell i (ie. cell Ci,j) with radius
r: Ck,l ∈ Ni if k ∈[ i − r, i + r] and l ∈[ j − r, j + r]
(see Figure 2).
We can retrace the original algorithm if we set the

neighbourhood size for each particle to fit the dimension
of the grid. However, if we set a smaller r radius, it defines
a locally connected Ni neighbourhood for each i particle:

Wi
t =

∑

j∈Ni

Ljt (8)

Using the sum of weights Wi
t of the neighbourhood, in

this case, the weights are set to

wj
t(i) = Ljt

Wi
t

(9)

where j ∈ Ni.
Now, the resampling step can be performed for each

i particle simultaneously within the local Ni neighbour-
hood according to the local distribution of the weights.
Fetching the weights is realized by local communication
on the physical device, therefore, it is fast. The ran-
dom take on all subsets around each i particle produces
N resampled particles, respectively. Hence, the time-
consuming part is parallelized, and the required compu-
tational effort is essentially independent of the number
of particles. This method might seem to be similar to

Figure 2 CNN architecture. CNN processor array architecture:
two-dimensional fully connected grids. The light gray background
highlights the r = 2 size neighbourhood around the black cell.

distributed particle filters [11], but there are no commu-
nication limits among the subsets in any time states.
CPF is suited to GPU architecture due to its parallel,

locally connected nature. Our aim is to ensure efficient
computation and therefore to exploit the properties of the
GPU in our adaptation.

GPU details
Our proposed mapping is based on the GPU features
summarized in this section. We used NVIDIA CUDA
(see [27]) for notations and details. Figure 3 shows the
basic architecture of the GPU considered mainly from the
view of mapping CPF to this architecture.
In the logical sense, the kernel function is the function

executed on the device. It is executed simultaneously by
threads. Threads are organized into blocks (typically 32 to
512 in each, based on the current task), in a one-, two-,
or three-dimensional array. Blocks are organized in a
grid in a one- or two-dimensional array. The number of
threads per block and block per grid is called execution
configuration.
In the physical sense, the device is built up from stream-

ing multiprocessors (SMP). Each SMP consists of an SD
RAM, a number of cuda cores and a scheduling unit.
The SD RAM is an on-chip memory, with a few tens of
clock cycle delays, its size is 64 kB, and it is divided to
L1 cache and shared memory. The GPU has an off-chip
global memory to be accessed by each SMP. Its size is
usually around 1 to 4 GB, depending on the type of the
particular device. Its delay is 400 to 600 clock cycles. Addi-
tionally, there are two other types of memory spaces that
both reside off-chip and are cached on-chip. The first
one is texture memory, and the second one is constant
memory. The latter’s size is 64 kB.
Blocks are mapped to SMPs. Shared memory of block

Bi can only be accessed by the threads which reside in
Bi. The communication and data share among the blocks
are performed through the global memory. A fixed col-
lection of threads is called warp. Currently, the number
of threads in a warp (warp size) is 32, which is physically
executed simultaneously. Besides proper memory usage,
warp conflict avoidance is essential [27]. The vendor sug-
gests block sizes multiple of the warp size to achieve
the most efficient computation. However, in extreme sit-
uations, optimal block size can differ from the advised
values [28]. If some threads in the warp choose different
branches of operation based on the processed data, the
threads within the warp may diverge. This is called warp
desynchronization and results in the serialization of some
threads which adds runtime delay. As a rule of thumb, the
block size should be a multiple of 32 and each multipro-
cessor should execute at least six warps at the same time
because the pipeline is six levels deep; therefore, 8× 32 =
256 may be an ideal thread number.
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Figure 3 GPU architecture. Simplified architecture of the GPU. Streaming multiprocessors (SMP) contain cuda cores (Pi), an on-chip (shared), fast
memory, scheduling unit and special function unit. Besides, all cuda cores in all SMPs have access to the large and slow off-chip memory (global
memory).

To achieve a high throughput, on-chip memory (shared
memory) should be used if threads require frequent data
access. Therefore, the main computational tasks are per-
formed block-wise, in the shared memory of the blocks,
and only necessary global synchronization is performed
through global memory. Although the two-dimensional
texture and surface memory would also be feasible,
shared memory throughput can be optimized for a one-
dimensional array type representation; thus, structural
aspects in CPF algorithm were reconsidered.
In the shared memory, we use arrays with the size 512

for the particles, the error terms, the normalizing sums
and the uniform random numbers. In our case study,
when taking the highest neighbourhood size and at a
single precision 10,250 bytes are occupied. Each shared
memory can access a 48-kB memory/multiprocessor at
compute capability 2.x [27]. Global memory in recent
GPUs is at least 1 GB which restricts the number of
states in the observation and estimation, but bothmemory
access is high enough for our computations.

Our proposedmethod
Random number generation
The SIR in each t time step requires the same amount
of random numbers as the number of particles. We
intend to generate these random sequences on the GPU
device instead of the CPU to spare repetitive data trans-
fer between the main memory of the system and the
global memory of the device as recognized in [10]. The
distribution of the random numbers in the resampling is

critical on the quality of the estimation. If it is not uni-
form, though the drawing of particles should depend on
the weights exclusively, then it would be biased.
Recently GPU random number generation for various

purposes has become widely investigated and well tested
(see [29-31]). NVIDIA provides two solutions for random
number generation. The first option was the Mersenne
Twister in the SDK. Unfortunately, we observed that the
generated distribution is inappropriate for a small set
(hundreds or thousands) of numbers and is primarily
admissible for around twomillion numbers and above.We
made delicate modifications to get admissible distribution
(see Appendix for details). The second option was curand,
which proved to be fast and appropriate.

GPU CPF algorithm
As described at CPF subsection, particles are represented
as arranged on a 2D grid with local connections and have
a given neighbourhood radius. Although GPUs have a dif-
ferent kind of architectural organization compared to the
CNN structure, it is possible to map the 2D topology
to GPUs’ memory hierarchy. However, two modifications
were made in the particle topology to fit better to the
architectural details of GPUs, namely, instead of 2D, a 1D
topology was applied and the neighbourhood was con-
sidered circular (see Figure 4) in one direction. There
were two reasons for these decisions. First, the propor-
tional size of the neighbourhood is smaller in the 1D case.
Second, using only one side of the neighbourhood, the
coalesced memory access is ensured.
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Figure 4 Ring type topology. Restructuring linear representation of
N blocks to a ring type topology. Bi stands for the ith block, and NBi
for the corresponding neighbourhood from the previous block,
i ∈ 1, . . . ,N.

The local connectivity is preserved by choosing each
shared memory array size higher than the thread number
exactly with the size of the required neighbourhood. Each
thread with index i can obtain its k neighbours at indexes
i − 1, i − 2, . . . , i − k.
In the following, we specify some implementation

details. Although the operations are mainly performed
in the shared memory because of the synchronization
and CPU-GPU data transfer, the following variables are
global memory arrays: the observation sequence (Y ), the
state estimation (X) and the set of particles xparticles. The
number of particles is denoted by N. Y is naturally given,
X is empty, and xparticles is initialized with N samples of
the same distribution as nt described in Equation 10. The
number of threads in a block was set to 256. The size of the
neighbourhood is r, meaning each particle is connected to
exactly r+1 particle (every particle is connected to itself ).

In each block, two sharedmemory arrays of size 256+r are
created for particle states xshared and fitness values Lshared;
additionally, two arrays whose size equal the number
of threads in a block are allocated for uniform pseudo-
random numbers Ushared and normalizing weights
wshared.
In each time step, we copy the particle values from

the global memory to the shared memory by overlap-
ping split (see Figure 5 for illustration). We load 256
values respectively to each shared memory to the parti-
cle’s array (xshared) but sparing its first r elements. These
positions are filled with the r neighbours in the global
memory of the first element in xshared. For the very first
element, we use a circular approach by taking the val-
ues from the end of the global memory array. There are
three kernel calls for each estimated values to provide full
synchronization.
The main kernel performs the following operations in

each time step t (also see Figure 6 with the same num-
bering), where global and local thread IDs are defined
as follows: igl = blockDim.x × blockSize.x + threadId.x
and iloc = threadId.x, where threadId.x is the thread
index in the thread block, blockSize.x is the number of
thread per each block, and blockDim.x is the index of
the block. For more information about the terminology,
see [27]:

I Initialization:

2. xshared[ iloc + r]← xparticles[ igl].
2. If iloc < r, then

xshared[ iloc]← xparticles[ igl − r + iloc].
2. If igl < r, then

xshared[ iloc]← xparticles[N − r + igl].

Figure 5Memory allocations. Splitting a global memory data array to shared memory keeping local connectivity, where ‘s’ stands for the number
of threads in each block and r stands for the size of neighbourhood. To fit the architectural details of the GPU and reduce computational time, we
applied 1D topology instead of the proposed 2D grid with one-sided neighbourhood.
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Figure 6 Overview. Flowchart of our implementation on the GPU device. S denotes the number of threads in each block, xparticlect denotes the
resampled particle set in t state. The observation sequence consists about T states.

II Error calculation:

3. Lshared[ iloc + r]← l(Y [ t]−xshared[ iloc + r] ).
3. If iloc < r, then

Lshared[ iloc]← l(Y [ t]−xs[ iloc] ).
4. wshared[ iloc]←

Lshared[ iloc]+ · · · + Lshared[ iloc + r] get
normalization sums for each particle.

III Resampling:

5. If iloc == 0, refresh seed value of the block.
6. Fill Ushared with uniform random numbers.
7. Iteratively sum Lshared[ jloc] /wshared[ jloc]

where jloc = iloc, iloc − 1, · · · , iloc − r. Stop if
adding an Lshared[ kloc] /wshared[ kloc] term
affects the sum to exceed Ushared[ iloc] for the
first time.

8. From the neighbourhood of iloc, the
corresponding k particle is selected to

xparticlest [ iloc]. Estimation is calculated from
these particle values.

IV Iteration on particles (generating samples for next
state):

9. Fill Ushared with normally distributed random
numbers.

9. xshared[ r + iloc]← ϕ(xshared[ r + iloc] , nt).
10. xparticles[ igl]← xshared[ iloc + r].

The estimation is performed by two kernel calls. The
first kernel calculates the sum for each shared memory
xparticlest arrays to a global memory array gSum. The sec-
ond kernel takes the average value of gSum with respect
to the number of particles.
Besides, the following optimization techniques were

used to achieve optimal efficiency on the GPU: (1) ran-
dom number generation, resampling and average calcu-
lation are performed only on the relevant part of the
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shared memory to spare time; (2) the number of if state-
ments is minimized as possible and are transformed to
ternary expressions; and (3) the shared memory arrays
are reused; therefore, even some parameter passes can
be spared.

Evaluation and results
Model
The implemented algorithm was tested on two different
widely used models. The first was the following bench-
mark model [8,23,32,33]:

xt+1 = xt
2

+ 25xt
1 + x2t

+ 8 cos(1.2t) + nt (10)

yt = x2t
20

+ ut (11)

This model is non-autonomous, non-linear and has a
continuous state space; thus, linear tools for state esti-
mation are not applicable. The state of the system is xt ,
and the observation is yt ; nt and ut are IID Gaussian
sequences, nt ∼ N(0, 10) and ut ∼ N(0, 1).
The second model was a bearings-only tracking (BOT)

model originally presented in [23] and also analyzed in
[16,17]. For the illustration about the trajectories of each
model, see Figures 7 and 8.

Measurements
There are two aspects of the measurements, namely, the
average quality and the required time for one estima-
tion. These two quantities were monitored with different

configurations (number of particles and radius of neigh-
bourhood) of the filter. The number of particles were
swept through the following values: 2,048, 4,096, 8,192,
and 16,384, while the radius of neighbourhood took the
following values: 32, 64, 128, and 256. Consequently, 24
pairs of these are composed; in our terminology, these are
called configurations (i.e. N,r pairs). For the first model,
the input observation trajectories (yt) during the tests
were exactly the same as the ones used in [21] to ensure
a fair comparison. For the BOT model, we generated
100 trajectories over 24 time steps based on the given
state transition equations in [23] and, respectively, the
observations.
Measurements were done on a PC with Intel i5-660

(3.33 GHz, 4-MB cache) 4 CPU with 4-GB system mem-
ory running Ubuntu Linux 11.04 with kernel version
2.6.38-15 (amd64). We used an NVIDIA GeForce GTX
550 Ti GPU with 1-GB GDDR memory with CUDA
toolkit 4.1 with 295.49 driver version. The following
nvcc compiler options were used to drive the GPU
binary code generation: -arch=sm_20;-use_fast_math. We
also made some measurements with -arch=sm_13. The
host c code was compiled with gcc 4.5; the compiler
flag was -O2. GPU kernel running times were mea-
sured with the official profiler provided by the toolkit,
and the global times were measured by the OS’s own
timer. The kernel time measurements include the par-
ticle filtering kernel of a single time step; the global
times include all operations during the execution for
all states (file I/O, memory allocations, computational
operations, etc.).

Figure 7 Trajectory for the first model. The hidden states are marked with blue and the observation values of the states are marked with green.
The state estimation of our GPU CPF is marked with red.
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Figure 8 Trajectory for the BOTmodel. The positions (x − y) are the hidden states (blue), the estimation from the GPU CPF is red. The mean of the
position error is about 0.08.

The quality of estimation was measured by the mean
square error (MSE). In the case as the first model, 1,000
estimations for each configuration of 100 time step long
HMMs were made. In the case of the BOT model,
the generated 100 trajectories were estimated with each
configuration.

Estimation quality
The quality of estimation for the first model was mea-
sured by the MSE between each hidden and estimated
trajectories, for the BOT model by the position error
(ie. Euclidean distance). We used 1,000 and 100 differ-
ent state sequences (i.e. observation sequences) for each
configuration in the first model and the BOT model,
respectively.
Figure 9 presents the quality of estimation for the first

model; Figure 10, for the BOT model, namely the mea-
surement error with respect to the measurement time.
Each point represents a configuration since its x and y
coordinate values are the mean of 1,000 and 100 execu-
tions for the two models, respectively. For the first model,
it can be seen that using more than 4,096 particles slightly
improves the quality of estimation.
However, for the BOT model estimations, where the

particle number is more or equal to 2,048 (alike [16,17]),
provide a fair result. The position error is in the same
range as in [17] and our proposed method. The results
suggest that the proportion of the neighbourhood size to
the particle number realizes an information sharing ratio
among the particles. This can be seen in Figure 10: the
optimal ratio for the configuration is when the position

error is minimal, typically marked with squares except
2,048 particles when marked with triangle.

Time
Figure 11 presents the total runtime of the kernels in
the first model. The blue lines represent the running
times with compiler option -arch=sm_13; the red lines,
with -arch=sm_20;fast_math;. The first compilation set-
ting will be referred to as old target code; the latter, as new
target code. It can be seen that for the neighbourhood size
below 64, the old target code performs 20% faster than the
new. With the new target code, we can achieve a 40% to
45% improvement in execution time if the old target code
is considered as 100%.
Due to the logic of physical mapping of blocks to mul-

tiprocessors, the GPU is under-utilized for particle num-
bers under 2,048. Above this particle number, the scaling
of the execution time is nicely illustrated in Figure 11.
For various neighbourhood sizes, we can say that the

required time is proportionally increasing to the number
of R. This phenomenon is due to the resampling step as it
examines the candidates sequentially for resampling. Even
if the proper particle is found, the loop does not termi-
nate until the current particle is compared to all of its
neighbours to avoid warp desynchronization.
The execution time of particle filter (including file

I/O, initialization of random number generation, mem-
ory transfer between CPU and GPU, etc.) is 77 ms for
the BOT model. However, we used the same model as in
[16]; an exact comparison is hardly available due to the
differences of the GPUs and it is not specified what their
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Figure 9 Estimation quality for the first model. This figure shows the mean square error of the estimation as a function of kernel times. It can be
seen that at a given particle number with the increase of the neighbourhood size, the estimation quality improves simultaneously.

Figure 10 Estimation quality for the BOTmodel. This figure shows (the root mean of) the position error of the estimation as a function of the
kernel times. For this model, it can be seen that there is an optimal information share ratio where the position error is the lowest for a given particle
number at a neighbourhood size.
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Figure 11 Kernel runtimes with different nvcc flags. This figure shows the difference between the total running times for the different compiler
options for the first model. The use of fast math and sm_20 has a significant effect on the kernel times.

time measurements include. For the first model, see total
execution times with and without host code optimization
(made by compiler) in Figure 12.

Discussion
A key point of our proposed algorithm is the local resam-
pling technique which has a high influence on the esti-
mation quality. This key point can be viewed as diffusion
of information inasmuch as every particle with relatively
high likelihood attracts all particles which has this likely
particle in its neighbourhood. In this way, the other par-
ticles not having this very particle in their neighbour-
hood are not affected in this state estimation time step.
Although it is not the traditional full resampling, it enables
the algorithm to be sufficient even at high-uncertainty
dynamicmodels. The BOTmodel is not a highly uncertain
model as sharp changes are unlikely, but in the one dimen-
sion benchmark model (as you can see in Figure 7), rapid
and significant changes are typical. Cellular resampling
preserves the diversity of the particles to avoid quality loss.
The estimation error for a given particle number changes
within a narrow range around the optimal, depending on
the neighbourhood size. This modulation is not in direct
or inverse ratio to the number of used neighbours but fol-
lows a descending and then increasing characteristic (like
the shape of letter ‘U’, see Figure 10). This indicates that

for a given model, at any particle number, there exists an
optimal share ratio range among particles to achieve the
lowest error. In our proposed method, the information
sharing ratio is tunable and may be modulated adaptively;
therefore, it broadens the range of options than using a
predefined information share value. For further details
and reasoning, see [21].
To ensure the local diffuse information share, we used

shared memory arrays. Due to the high number of writing
and reading data arrays (particle samples, weights, like-
lihoods, resampled values etc), if it were performed in
global memory alone, the performance would be worse.
However, the use of global memory cannot be totally
evaded as synchronization and regular information shar-
ing among blocks are essential. Without this synchroniza-
tion, a similar information loss and quality degradation
would appear as in the case of the distributed particle
filter presented in [11] though this synchronization is a
time quality trade-off. However, using constant memory
(which is cached) would expose an attainable solution;
only the observation values could be stored in the constant
memory since all the other values are generated during
kernel execution. Additionally, it would not improve the
performance as reading from the constant memory space
requires a fetch from the off-chip memory to cache the
value of the current observation (like the current fetch
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Figure 12 Global runtimes for the first model with and without O2. This figure shows the speed-up of the host code optimization compiler
option for the first model.

from the global memory to the shared memory), and the
access time of the constant cache is similar to the access
time of the shared memory.
Two different models were used in this work. The first

one is a synthetic benchmark model. It does not model
any physical system of practical interest. It is just a widely
used highly non-linear model since both the observation
and the state transition is non-linear, unlike the other
model (BOT model) which has a linear state transition.
This secondmodel describes a bearing-only tracking of an
object in the two-dimensional (x − y) plane, with a fixed
observer position, where observation (z) is the bearing of
the object trajectory. Through the BOT model, we can
compare the estimation quality of CPF to GPU particle fil-
ters in [11,16,17]. We can see that the error is in the same
range with [16] and is better than error in [11]. According
to the error and time measurements, we can state that this
is a feasible mapping from a virtual machine (CNN UM-
inspired architecture) to a state-of-the-art architecture
with a mature ecosystem available at a low cost.
In this algorithm, each thread executes roughly 300

to 2,100 floating point operations. This depends on
the neighbourhood size. Those operations which are
performed through the neighbourhood are additions and
unfortunately divisions (calculating the actual weights

with the norming sums in the resampling). This amount
of divisions are clearly one bottleneck. The speed-up
achieved with fast_math also supports this explanation.
The other bottleneck of the algorithm is the shared mem-
ory size and access pattern. If more threads could reside in
a block, then the ratio of the overlay among blocks due to
the neighbourhood size would be less. In the resampling,
branches are unavoidable, and fork and join of threads
within a warp are necessary. There are a number of for-
loopswhich iterate through the given number of iterations
where the end index is unknown at the time of host code
compilation. In our framework, it is only known in run-
time. Still, for a given application, optimal parameters can
be set directly in the code based on measurements, and
therefore, loop unroll can be applied. Another approach
can be just-in-time (JIT) kernel compilation. This method
is effective only if the JIT compilation time is less than the
cumulative gain from the loop unrolling through the state
predictions.
On the one hand, if we would perform the algorithm

as purely sequential, the order would be O(N × R) with-
out the random number generation which (as mentioned)
is not part of the basic task. On the other hand, with a
virtual GPU on which all blocks are active simultaneously
(totally utilized), the order of the algorithmwould beO(R)
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as the threads are independent from each other, not count-
ing the synchronization points. However, on GTX 550,
the time increase starts after 1,536 threads (on 6 SMPs×
256 threads). On GTX 580, there are 16 multiproces-
sors in comparison with the 6 multiprocessors of GTX
550; therefore, under 4,096 threads, the GPU would be
under-utilized (i.e. GTX 580 is the top GPU of the Fermi
GPUs).
A direct comparison to a CPU, sequential particle fil-

ter, is not entirely adequate; still, we would like to mention
differences in the running time. In [21], particle filter was
realized and used as a reference for time measurements of
the proposed algorithm; therefore, we compare our results
to this also. However, time measurements are not pre-
sented for many particle numbers; measurements of 4,096
particles already indicates the benefits of our implementa-
tion compared to the CPU version. Execution time of the
algorithm was 16.417 s for the first model on a dual-core
processor PC (Intel T6570) with 2.1 GHz. Compared to
our 100-ms execution time, we can say that a 164x speed-
up is achieved. We provide all our measurement data as
Additional file 1.

Conclusions
In this paper, we introduced the first adaptation of CPF
to GPU architecture. Compared to [21], we measured the
performance on a real hardware. The strength of this
approach is to maintain the local connectivity to pre-
vent information loss, while the position error and
the execution time are comparable to those of [16] if
we assume that their measurements also include all

operations (file I/O, random number generation, etc.).
We utilize architectural features: whilst CPF algorithm
would demand two-dimensional representation, (e.g. tex-
ture or surface), we modified the algorithm to enable
one-dimensional processing and still kept the local con-
nectivity and the local neighbourhood-based reduced and
parallel processing.
The compute capability of the GPU determines the

maxima of the number of threads that can be handled
at each state. The sequential operations are performed in
the shared memory thus shall make no effect on running
time when we increase the number of particles. Still, as the
shared memory blocks are arranged to multiprocessors as
defined on the device, there is a scheduling which intro-
duces a delay. Therefore, however parallel, the algorithm
still will require more time at more particles.
The proposed method is independent from the random

generator if the quality of the uniform and normal dis-
tribution is acceptable. As the first approach, we used
NVIDIA Mersenne Twister for which the corrections to
achieve adequate distribution, see details in the Appendix.
In the second approach, we used curand which gener-
ates appropriate distribution quickly. This adaptation of
CPF by delicate modifications presents GPU as an excel-
lent platform to solve problems that could not be solved
real-time previously.

Appendix
Modification of NVIDIA SDKMersenne twister
NVIDIA SDK provides an implementation of Mersenne
twister (MT) [34,35], which apparently exposes an

Figure 13Mersenne Twister distribution.Mersenne Twister uniform distribution (gray) histogram compared to MATLAB uniform distribution
(black) with 60 histogram bins on 1,000 random numbers. We can see significant spikes in the histogram of NVIDIA Mersenne Twister which would
introduce bias to the resampling. Therefore, it is not suitable for our purpose.
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Figure 14Modified MT distribution. A total of 1,000 random number were generated with the modified implementation of Mersenne Twister
compared to MATLAB and original Mersenne Twister distributions on 60 bins. Due to new characteristics, now we have a suitable random number
generator.

attainable solution. Still, we observed that the generated
distribution is inappropriate for a small set (hundreds or
thousands) of numbers and is primarily admissible for
around two million numbers and above. As we mentioned
earlier, in relation to GPUmemorymanagement, themain
operations are performed in the shared memory; thus,
random number generator is required to comply with
the shared memory array size. Consequently, the original
NVIDA SDK MT is not feasible for our implementation.
Figure 13 shows the difference of the histogram of theMT-
generated numbers compared to the histogram of a same
number of random values fromMATLAB.
To achieve an adequate distribution for the resampling,

we made the modifications as follows based on [34] and
our empirical experiences. The degree of recursion was
changed from 19 to 397; the middle term, from 9 to 624;
and the shift value u, from 12 to 11 based on the original
values from [34]. Besides, in the tempering transforma-
tion, we used the originally defined masks instead of the
loaded ones from a predefined file, with hexadecimal val-
ues in the bitwise operations. For each thread, the first
element of the state array is calculated with a thread and
current time-based seed value based on the thread ID and
the current system time. The final value is calculated with
initializing on the first element of the bit vector for each
thread.
With the above modifications, we achieved an accept-

able uniform distribution from the Mersenne Twister,
which is illustrated in Figure 14, compared to the former
MT and the MATLAB distributions.

Additional file

Additional file 1: estimationBOT, estimationFirst, input1000BOT,
input1000First, and readme.txt. input1000BOT folder: files containing
the 1,000 trajectories for the BOT model. estimationBOT folder: estimation
(ie. output) values of the cellular particle filter for the BOT model. Each file
corresponds to a configuration, containing 1,000 lines each for a different
estimated trajectory. input1000First folder: files containing the 1,000
trajectories for the first model. estimationFirst folder: estimation (ie. output)
values of the cellular particle filter for the first model. Each file corresponds
to a configuration, containing 1,000 lines each for a different estimated
trajectory.
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