Smart epidemic control: A hybrid model blending ODEs and agent-based simulations for optimal, real-world intervention planning

Polcz Péter; Reguly István Zoltán; Tornai Kálmán; Juhász János; Pongor Sándor; Csikász-Nagy Attila; Szederkényi Gábor: Smart epidemic control: A hybrid model blending ODEs and agent-based simulations for optimal, real-world intervention planning.
PLOS COMPUTATIONAL BIOLOGY, 21 (5). ISSN 1553-734X (2025)

[thumbnail of journal.pcbi.1013028.pdf] Szöveg
journal.pcbi.1013028.pdf - Megjelent verzió

Download (5MB)
Mű típusa: Folyóiratcikk
Szerző azonosítók:
NévORCIDMTMT szerző azonosító
Polcz Péter10055791
Reguly István Zoltán0000-0002-4385-420410034269
Tornai Kálmán0000-0003-1852-081610029781
Juhász János10049994
Pongor Sándor10013922
Csikász-Nagy Attila0000-0002-2919-560110012379
Szederkényi Gábor0000-0003-4199-608910000614
Absztrakt (kivonat): Optimal intervention planning is a critical part of epidemiological control, which is difficult to attain in real life situations. Ordinary differential equation (ODE) models can be used to optimize control but the results can not be easily translated to interventions in highly complex real life environments. Agent-based methods on the other hand allow detailed modeling of the environment but optimization is precluded by the large number of parameters. Our goal was to combine the advantages of both approaches, i.e., to allow control optimization in complex environments. The epidemic control objectives are expressed as a time-dependent reference for the number of infected people. To track this reference, a model predictive controller (MPC) is designed with a compartmental ODE prediction model to compute the optimal level of stringency of interventions, which are later translated to specific actions such as mobility restriction, quarantine policy, masking rules, school closure. The effects of interventions on the transmission rate of the pathogen, and hence their stringency, are computed using PanSim, an agent-based epidemic simulator that contains a detailed model of the environment. The realism and practical applicability of the method is demonstrated by the wide range of discrete level measures that can be taken into account. Moreover, the change between measures applied during consecutive planning intervals is also minimized. We found that such a combined intervention planning strategy is able to efficiently control a COVID-19-like epidemic process, in terms of incidence, virulence, and infectiousness with surprisingly sparse (e.g. 21 day) intervention regimes. At the same time, the approach proved to be robust even in scenarios with significant model uncertainties, such as unknown transmission rate, uncertain time and probability constants. The high performance of the computation allows a large number of test cases to be run. The proposed computational framework can be reused for epidemic management of unexpected pandemic events and can be customized to the needs of any country.
Folyóirat címe: PLOS COMPUTATIONAL BIOLOGY
Megjelenés éve: 2025
Kötet: 21
Szám: 5
ISSN: 1553-734X
Intézmény: Pázmány Péter Katolikus Egyetem
Kar: Információs Technológiai és Bionikai Kar (2013.07.-)
Nyelv: angol
MTMT rekordazonosító: 36128350
DOI azonosító: 10.1371/journal.pcbi.1013028
Scopus azonosító: 105004425084
WoS azonosító: 001484632800003
Dátum: 2025. Jún. 25. 15:22
Utolsó módosítás: 2025. Jún. 25. 16:11
URI: https://publikacio.ppke.hu/id/eprint/2734

Actions (login required)

Tétel nézet Tétel nézet